2025-04-24
Creative
FeedQUAC: Quick Unobtrusive AI-Generated Commentary
Tao Long, Kendra Wannamaker, Jo Vermeulen, George Fitzmaurice, Justin Matejka
Design thrives on feedback. However, gathering constant feedback throughout the design process can be labor-intensive and disruptive. We explore how AI can bridge this gap by providing effortless, ambient feedback. We introduce FeedQUAC, a design companion that delivers real-time AI-generated commentary from a variety of perspectives through different personas. A design probe study with eight participants highlights how designers can leverage quick yet ambient AI feedback to enhance their creative workflows. Participants highlight benefits such as convenience, playfulness, confidence boost, and inspiration from this lightweight feedback agent, while suggesting additional features, like chat interaction and context curation. We discuss the role of AI feedback, its strengths and limitations, and how to integrate it into existing design workflows while balancing user involvement. Our findings also suggest that ambient interaction is a valuable consideration for both the design and evaluation of future creativity support systems. [Submitted on 23 Apr 2025]

Synthetic Lyrics Detection Across Languages and Genres
Yanis Labrak, Markus Frohmann, Gabriel Meseguer-Brocal, Elena V. Epure
In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the text modality, lyrics, in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We performed a thorough evaluation of existing synthetic text detection approaches on lyrics, a previously unexplored data type. We also investigated methods to adapt the best-performing features to lyrics through unsupervised domain adaptation. Following both music and industrial constraints, we examined how well these approaches generalize across languages, scale with data availability, handle multilingual language content, and perform on novel genres in few-shot settings. Our findings show promising results that could inform policy decisions around AI-generated music and enhance transparency for users. [Submitted on 21 Jun 2024 (v1), last revised 23 Apr 2025 (this version, v3)]

Reasoning
Lightweight Latent Verifiers for Efficient Meta-Generation Strategies
Bartosz Piotrowski, Witold Drzewakowski, Konrad Staniszewski, Piotr Miłoś
Verifiers are auxiliary models that assess the correctness of outputs generated by base large language models (LLMs). They play a crucial role in many strategies for solving reasoning-intensive problems with LLMs. Typically, verifiers are LLMs themselves, often as large (or larger) than the base model they support, making them computationally expensive. In this work, we introduce a novel lightweight verification approach, LiLaVe, which reliably extracts correctness signals from the hidden states of the base LLM. A key advantage of LiLaVe is its ability to operate with only a small fraction of the computational budget required by traditional LLM-based verifiers. To demonstrate its practicality, we couple LiLaVe with popular meta-generation strategies, like best-of-n or self-consistency. Moreover, we design novel LiLaVe-based approaches, like conditional self-correction or conditional majority voting, that significantly improve both accuracy and efficiency in generation tasks with smaller LLMs. Our work demonstrates the fruitfulness of extracting latent information from the hidden states of LLMs, and opens the door to scalable and resource-efficient solutions for reasoning-intensive applications. [Submitted on 23 Apr 2025]

AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset
Ivan Moshkov, Darragh Hanley, Ivan Sorokin, Shubham Toshniwal, Christof Henkel, Benedikt Schifferer, Wei Du, Igor Gitman
This paper presents our winning submission to the AI Mathematical Olympiad - Progress Prize 2 (AIMO-2) competition. Our recipe for building state-of-the-art mathematical reasoning models relies on three key pillars. First, we create a large-scale dataset comprising 540K unique high-quality math problems, including olympiad-level problems, and their 3.2M long-reasoning solutions. Second, we develop a novel method to integrate code execution with long reasoning models through iterative training, generation, and quality filtering, resulting in 1.7M high-quality Tool-Integrated Reasoning solutions. Third, we create a pipeline to train models to select the most promising solution from many candidates. We show that such generative solution selection (GenSelect) can significantly improve upon majority voting baseline. Combining these ideas, we train a series of models that achieve state-of-the-art results on mathematical reasoning benchmarks. To facilitate further research, we release our code, models, and the complete OpenMathReasoning dataset under a commercially permissive license. [Submitted on 23 Apr 2025]

DMind Benchmark: The First Comprehensive Benchmark for LLM Evaluation in the Web3 Domain
Miracle Master, Rainy Sun, Anya Reese, Joey Ouyang, Alex Chen, Winter Dong, Frank Li, James Yi, Garry Zhao, Tony Ling, Hobert Wong, Lowes Yang
Recent advances in Large Language Models (LLMs) have led to significant progress on a wide range of natural language processing tasks. However, their effectiveness in specialized and rapidly evolving domains such as Web3 remains underexplored. In this paper, we introduce DMind Benchmark, a novel framework that systematically tests LLMs across nine key categories encompassing blockchain fundamentals, infrastructure, smart contract analysis, decentralized finance (DeFi), decentralized autonomous organizations (DAOs), non-fungible tokens (NFTs), token economics, meme concepts, and security vulnerabilities. DMind Benchmark goes beyond conventional multiple-choice questions by incorporating domain-specific subjective tasks (e.g., smart contract code auditing and repair, numeric reasoning on on-chain data, and fill-in assessments), thereby capturing real-world complexities and stress-testing model adaptability. We evaluate fifteen popular LLMs (from ChatGPT, DeepSeek, Claude, and Gemini series) on DMind Benchmark, uncovering performance gaps in Web3-specific reasoning and application, particularly in emerging areas like token economics and meme concepts. Even the strongest models face significant challenges in identifying subtle security vulnerabilities and analyzing complex DeFi mechanisms. To foster progress in this area, we publicly release our benchmark dataset, evaluation pipeline, and annotated results at this http URL, offering a valuable resource for advancing specialized domain adaptation and the development of more robust Web3-enabled LLMs. [Submitted on 18 Apr 2025]

Context-Awareness and Interpretability of Rare Occurrences for Discovery and Formalization of Critical Failure Modes
Sridevi Polavaram, Xin Zhou, Meenu Ravi, Mohammad Zarei, Anmol Srivastava
Vision systems are increasingly deployed in critical domains such as surveillance, law enforcement, and transportation. However, their vulnerabilities to rare or unforeseen scenarios pose significant safety risks. To address these challenges, we introduce Context-Awareness and Interpretability of Rare Occurrences (CAIRO), an ontology-based human-assistive discovery framework for failure cases (or CP - Critical Phenomena) detection and formalization. CAIRO by design incentivizes human-in-the-loop for testing and evaluation of criticality that arises from misdetections, adversarial attacks, and hallucinations in AI black-box models. Our robust analysis of object detection model(s) failures in automated driving systems (ADS) showcases scalable and interpretable ways of formalizing the observed gaps between camera perception and real-world contexts, resulting in test cases stored as explicit knowledge graphs (in OWL/XML format) amenable for sharing, downstream analysis, logical reasoning, and accountability. [Submitted on 18 Apr 2025]

Towards Explainable and Lightweight AI for Real-Time Cyber Threat Hunting in Edge Networks
Milad Rahmati
As cyber threats continue to evolve, securing edge networks has become increasingly challenging due to their distributed nature and resource limitations. Many AI-driven threat detection systems rely on complex deep learning models, which, despite their high accuracy, suffer from two major drawbacks: lack of interpretability and high computational cost. Black-box AI models make it difficult for security analysts to understand the reasoning behind their predictions, limiting their practical deployment. Moreover, conventional deep learning techniques demand significant computational resources, rendering them unsuitable for edge devices with limited processing power. To address these issues, this study introduces an Explainable and Lightweight AI (ELAI) framework designed for real-time cyber threat detection in edge networks. Our approach integrates interpretable machine learning algorithms with optimized lightweight deep learning techniques, ensuring both transparency and computational efficiency. The proposed system leverages decision trees, attention-based deep learning, and federated learning to enhance detection accuracy while maintaining explainability. We evaluate ELAI using benchmark cybersecurity datasets, such as CICIDS and UNSW-NB15, assessing its performance across diverse cyberattack scenarios. Experimental results demonstrate that the proposed framework achieves high detection rates with minimal false positives, all while significantly reducing computational demands compared to traditional deep learning methods. The key contributions of this work include: (1) a novel interpretable AI-based cybersecurity model tailored for edge computing environments, (2) an optimized lightweight deep learning approach for real-time cyber threat detection, and (3) a comprehensive analysis of explainability techniques in AI-driven cybersecurity applications. [Submitted on 18 Apr 2025]

Hybrid Knowledge Transfer through Attention and Logit Distillation for On-Device Vision Systems in Agricultural IoT
Stanley Mugisha, Rashid Kisitu, Florence Tushabe
Integrating deep learning applications into agricultural IoT systems faces a serious challenge of balancing the high accuracy of Vision Transformers (ViTs) with the efficiency demands of resource-constrained edge devices. Large transformer models like the Swin Transformers excel in plant disease classification by capturing global-local dependencies. However, their computational complexity (34.1 GFLOPs) limits applications and renders them impractical for real-time on-device inference. Lightweight models such as MobileNetV3 and TinyML would be suitable for on-device inference but lack the required spatial reasoning for fine-grained disease detection. To bridge this gap, we propose a hybrid knowledge distillation framework that synergistically transfers logit and attention knowledge from a Swin Transformer teacher to a MobileNetV3 student model. Our method includes the introduction of adaptive attention alignment to resolve cross-architecture mismatch (resolution, channels) and a dual-loss function optimizing both class probabilities and spatial focus. On the lantVillage-Tomato dataset (18,160 images), the distilled MobileNetV3 attains 92.4% accuracy relative to 95.9% for Swin-L but at an 95% reduction on PC and < 82% in inference latency on IoT devices. (23ms on PC CPU and 86ms/image on smartphone CPUs). Key innovations include IoT-centric validation metrics (13 MB memory, 0.22 GFLOPs) and dynamic resolution-matching attention maps. Comparative experiments show significant improvements over standalone CNNs and prior distillation methods, with a 3.5% accuracy gain over MobileNetV3 baselines. Significantly, this work advances real-time, energy-efficient crop monitoring in precision agriculture and demonstrates how we can attain ViT-level diagnostic precision on edge devices. Code and models will be made available for replication after acceptance. [Submitted on 21 Apr 2025]

MARFT: Multi-Agent Reinforcement Fine-Tuning
Junwei Liao, Muning Wen, Jun Wang, Weinan Zhang
LLM-based Multi-Agent Systems have demonstrated remarkable capabilities in addressing complex, agentic tasks requiring multifaceted reasoning and collaboration, from generating high-quality presentation slides to conducting sophisticated scientific research. Meanwhile, RL has been widely recognized for its effectiveness in enhancing agent intelligence, but limited research has investigated the fine-tuning of LaMAS using foundational RL techniques. Moreover, the direct application of MARL methodologies to LaMAS introduces significant challenges, stemming from the unique characteristics and mechanisms inherent to LaMAS. To address these challenges, this article presents a comprehensive study of LLM-based MARL and proposes a novel paradigm termed Multi-Agent Reinforcement Fine-Tuning (MARFT). We introduce a universal algorithmic framework tailored for LaMAS, outlining the conceptual foundations, key distinctions, and practical implementation strategies. We begin by reviewing the evolution from RL to Reinforcement Fine-Tuning, setting the stage for a parallel analysis in the multi-agent domain. In the context of LaMAS, we elucidate critical differences between MARL and MARFT. These differences motivate a transition toward a novel, LaMAS-oriented formulation of RFT. Central to this work is the presentation of a robust and scalable MARFT framework. We detail the core algorithm and provide a complete, open-source implementation to facilitate adoption and further research. The latter sections of the paper explore real-world application perspectives and opening challenges in MARFT. By bridging theoretical underpinnings with practical methodologies, this work aims to serve as a roadmap for researchers seeking to advance MARFT toward resilient and adaptive solutions in agentic systems. Our implementation of the proposed framework is publicly available at: this https URL. [Submitted on 21 Apr 2025]

FinNLI: Novel Dataset for Multi-Genre Financial Natural Language Inference Benchmarking
Jabez Magomere, Elena Kochkina, Samuel Mensah, Simerjot Kaur, Charese H. Smiley
We introduce FinNLI, a benchmark dataset for Financial Natural Language Inference (FinNLI) across diverse financial texts like SEC Filings, Annual Reports, and Earnings Call transcripts. Our dataset framework ensures diverse premise-hypothesis pairs while minimizing spurious correlations. FinNLI comprises 21,304 pairs, including a high-quality test set of 3,304 instances annotated by finance experts. Evaluations show that domain shift significantly degrades general-domain NLI performance. The highest Macro F1 scores for pre-trained (PLMs) and large language models (LLMs) baselines are 74.57% and 78.62%, respectively, highlighting the dataset's difficulty. Surprisingly, instruction-tuned financial LLMs perform poorly, suggesting limited generalizability. FinNLI exposes weaknesses in current LLMs for financial reasoning, indicating room for improvement. [Submitted on 22 Apr 2025]

Transformer-Based Extraction of Statutory Definitions from the U.S. Code
Arpana Hosabettu (Google), Harsh Shah (Cornell University)
Automatic extraction of definitions from legal texts is critical for enhancing the comprehension and clarity of complex legal corpora such as the United States Code (U.S.C.). We present an advanced NLP system leveraging transformer-based architectures to automatically extract defined terms, their definitions, and their scope from the U.S.C. We address the challenges of automatically identifying legal definitions, extracting defined terms, and determining their scope within this complex corpus of over 200,000 pages of federal statutory law. Building upon previous feature-based machine learning methods, our updated model employs domain-specific transformers (Legal-BERT) fine-tuned specifically for statutory texts, significantly improving extraction accuracy. Our work implements a multi-stage pipeline that combines document structure analysis with state-of-the-art language models to process legal text from the XML version of the U.S. Code. Each paragraph is first classified using a fine-tuned legal domain BERT model to determine if it contains a definition. Our system then aggregates related paragraphs into coherent definitional units and applies a combination of attention mechanisms and rule-based patterns to extract defined terms and their jurisdictional scope. The definition extraction system is evaluated on multiple titles of the U.S. Code containing thousands of definitions, demonstrating significant improvements over previous approaches. Our best model achieves 96.8% precision and 98.9% recall (98.2% F1-score), substantially outperforming traditional machine learning classifiers. This work contributes to improving accessibility and understanding of legal information while establishing a foundation for downstream legal reasoning tasks. [Submitted on 23 Apr 2025]

A Survey of Foundation Model-Powered Recommender Systems: From Feature-Based, Generative to Agentic Paradigms
Chengkai Huang, Hongtao Huang, Tong Yu, Kaige Xie, Junda Wu, Shuai Zhang, Julian Mcauley, Dietmar Jannach, Lina Yao
Recommender systems (RS) have become essential in filtering information and personalizing content for users. RS techniques have traditionally relied on modeling interactions between users and items as well as the features of content using models specific to each task. The emergence of foundation models (FMs), large scale models trained on vast amounts of data such as GPT, LLaMA and CLIP, is reshaping the recommendation paradigm. This survey provides a comprehensive overview of the Foundation Models for Recommender Systems (FM4RecSys), covering their integration in three paradigms: (1) Feature-Based augmentation of representations, (2) Generative recommendation approaches, and (3) Agentic interactive systems. We first review the data foundations of RS, from traditional explicit or implicit feedback to multimodal content sources. We then introduce FMs and their capabilities for representation learning, natural language understanding, and multi-modal reasoning in RS contexts. The core of the survey discusses how FMs enhance RS under different paradigms. Afterward, we examine FM applications in various recommendation tasks. Through an analysis of recent research, we highlight key opportunities that have been realized as well as challenges encountered. Finally, we outline open research directions and technical challenges for next-generation FM4RecSys. This survey not only reviews the state-of-the-art methods but also provides a critical analysis of the trade-offs among the feature-based, the generative, and the agentic paradigms, outlining key open issues and future research directions. [Submitted on 23 Apr 2025]

Amplified Vulnerabilities: Structured Jailbreak Attacks on LLM-based Multi-Agent Debate
Senmao Qi, Yifei Zou, Peng Li, Ziyi Lin, Xiuzhen Cheng, Dongxiao Yu
Multi-Agent Debate (MAD), leveraging collaborative interactions among Large Language Models (LLMs), aim to enhance reasoning capabilities in complex tasks. However, the security implications of their iterative dialogues and role-playing characteristics, particularly susceptibility to jailbreak attacks eliciting harmful content, remain critically underexplored. This paper systematically investigates the jailbreak vulnerabilities of four prominent MAD frameworks built upon leading commercial LLMs (GPT-4o, GPT-4, GPT-3.5-turbo, and DeepSeek) without compromising internal agents. We introduce a novel structured prompt-rewriting framework specifically designed to exploit MAD dynamics via narrative encapsulation, role-driven escalation, iterative refinement, and rhetorical obfuscation. Our extensive experiments demonstrate that MAD systems are inherently more vulnerable than single-agent setups. Crucially, our proposed attack methodology significantly amplifies this fragility, increasing average harmfulness from 28.14% to 80.34% and achieving attack success rates as high as 80% in certain scenarios. These findings reveal intrinsic vulnerabilities in MAD architectures and underscore the urgent need for robust, specialized defenses prior to real-world deployment. [Submitted on 23 Apr 2025]

Think Hierarchically, Act Dynamically: Hierarchical Multi-modal Fusion and Reasoning for Vision-and-Language Navigation
Junrong Yue, Yifan Zhang, Chuan Qin, Bo Li, Xiaomin Lie, Xinlei Yu, Wenxin Zhang, Zhendong Zhao
Vision-and-Language Navigation (VLN) aims to enable embodied agents to follow natural language instructions and reach target locations in real-world environments. While prior methods often rely on either global scene representations or object-level features, these approaches are insufficient for capturing the complex interactions across modalities required for accurate navigation. In this paper, we propose a Multi-level Fusion and Reasoning Architecture (MFRA) to enhance the agent's ability to reason over visual observations, language instructions and navigation history. Specifically, MFRA introduces a hierarchical fusion mechanism that aggregates multi-level features-ranging from low-level visual cues to high-level semantic concepts-across multiple modalities. We further design a reasoning module that leverages fused representations to infer navigation actions through instruction-guided attention and dynamic context integration. By selectively capturing and combining relevant visual, linguistic, and temporal signals, MFRA improves decision-making accuracy in complex navigation scenarios. Extensive experiments on benchmark VLN datasets including REVERIE, R2R, and SOON demonstrate that MFRA achieves superior performance compared to state-of-the-art methods, validating the effectiveness of multi-level modal fusion for embodied navigation. [Submitted on 23 Apr 2025]

PIS: Linking Importance Sampling and Attention Mechanisms for Efficient Prompt Compression
Lizhe Chen, Binjia Zhou, Yuyao Ge, Jiayi Chen, Shiguang NI
Large language models (LLMs) have achieved remarkable progress, demonstrating unprecedented capabilities across various natural language processing tasks. However, the high costs associated with such exceptional performance limit the widespread adoption of LLMs, highlighting the need for prompt compression. Existing prompt compression methods primarily rely on heuristic truncation or abstractive summarization techniques, which fundamentally overlook the intrinsic mechanisms of LLMs and lack a systematic evaluation of token importance for generation. In this work, we introduce Prompt Importance Sampling (PIS), a novel compression framework that dynamically compresses prompts by sampling important tokens based on the analysis of attention scores of hidden states. PIS employs a dual-level compression mechanism: 1) at the token level, we quantify saliency using LLM-native attention scores and implement adaptive compression through a lightweight 9-layer reinforcement learning (RL) network; 2) at the semantic level, we propose a Russian roulette sampling strategy for sentence-level importance sampling. Comprehensive evaluations across multiple domain benchmarks demonstrate that our method achieves state-of-the-art compression performance. Notably, our framework serendipitously enhances reasoning efficiency through optimized context structuring. This work advances prompt engineering by offering both theoretical grounding and practical efficiency in context management for LLMs. [Submitted on 23 Apr 2025]

A Post-trainer's Guide to Multilingual Training Data: Uncovering Cross-lingual Transfer Dynamics
Luisa Shimabucoro, Ahmet Ustun, Marzieh Fadaee, Sebastian Ruder
In order for large language models to be useful across the globe, they are fine-tuned to follow instructions on multilingual data. Despite the ubiquity of such post-training, a clear understanding of the dynamics that enable cross-lingual transfer remains elusive. This study examines cross-lingual transfer (CLT) dynamics in realistic post-training settings. We study two model families of up to 35B parameters in size trained on carefully controlled mixtures of multilingual data on three generative tasks with varying levels of complexity (summarization, instruction following, and mathematical reasoning) in both single-task and multi-task instruction tuning settings. Overall, we find that the dynamics of cross-lingual transfer and multilingual performance cannot be explained by isolated variables, varying depending on the combination of post-training settings. Finally, we identify the conditions that lead to effective cross-lingual transfer in practice. [Submitted on 23 Apr 2025]

Credible plan-driven RAG method for Multi-hop Question Answering
Ningning Zhang, Chi Zhang, Zhizhong Tan, Xingxing Yang, Weiping Deng, Wenyong Wang
Multi-hop question answering (QA) presents a considerable challenge for Retrieval-Augmented Generation (RAG), requiring the structured decomposition of complex queries into logical reasoning paths and the generation of dependable intermediate results. However, deviations in reasoning paths or errors in intermediate results, which are common in current RAG methods, may propagate and accumulate throughout the reasoning process, diminishing the accuracy of the answer to complex queries. To address this challenge, we propose the Plan-then-Act-and-Review (PAR RAG) framework, which is organized into three key stages: planning, act, and review, and aims to offer an interpretable and incremental reasoning paradigm for accurate and reliable multi-hop question answering by mitigating error this http URL RAG initially applies a top-down problem decomposition strategy, formulating a comprehensive plan that integrates multiple executable steps from a holistic viewpoint. This approach avoids the pitfalls of local optima common in traditional RAG methods, ensuring the accuracy of the entire reasoning path. Subsequently, PAR RAG incorporates a plan execution mechanism based on multi-granularity verification. By utilizing both coarse-grained similarity information and fine-grained relevant data, the framework thoroughly checks and adjusts intermediate results, ensuring process accuracy while effectively managing error propagation and amplification. Experimental results on multi-hop QA datasets demonstrate that the PAR RAG framework substantially outperforms existing state-of-the-art methods in key metrics, including EM and F1 scores. [Submitted on 23 Apr 2025]

Process Reward Models That Think
Muhammad Khalifa, Rishabh Agarwal, Lajanugen Logeswaran, Jaekyeom Kim, Hao Peng, Moontae Lee, Honglak Lee, Lu Wang
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models will be released at this https URL. [Submitted on 23 Apr 2025]

Tracing Thought: Using Chain-of-Thought Reasoning to Identify the LLM Behind AI-Generated Text
Shifali Agrahari, Sanasam Ranbir Singh
In recent years, the detection of AI-generated text has become a critical area of research due to concerns about academic integrity, misinformation, and ethical AI deployment. This paper presents COT Fine-tuned, a novel framework for detecting AI-generated text and identifying the specific language model. responsible for generating the text. We propose a dual-task approach, where Task A involves classifying text as AI-generated or human-written, and Task B identifies the specific LLM behind the text. The key innovation of our method lies in the use of Chain-of-Thought reasoning, which enables the model to generate explanations for its predictions, enhancing transparency and interpretability. Our experiments demonstrate that COT Fine-tuned achieves high accuracy in both tasks, with strong performance in LLM identification and human-AI classification. We also show that the CoT reasoning process contributes significantly to the models effectiveness and interpretability. [Submitted on 23 Apr 2025]

Multimodal Situational Safety
Kaiwen Zhou, Chengzhi Liu, Xuandong Zhao, Anderson Compalas, Dawn Song, Xin Eric Wang
Multimodal Large Language Models (MLLMs) are rapidly evolving, demonstrating impressive capabilities as multimodal assistants that interact with both humans and their environments. However, this increased sophistication introduces significant safety concerns. In this paper, we present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety, which explores how safety considerations vary based on the specific situation in which the user or agent is engaged. We argue that for an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context. To evaluate this capability, we develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs. The dataset comprises 1,820 language query-image pairs, half of which the image context is safe, and the other half is unsafe. We also develop an evaluation framework that analyzes key safety aspects, including explicit safety reasoning, visual understanding, and, crucially, situational safety reasoning. Our findings reveal that current MLLMs struggle with this nuanced safety problem in the instruction-following setting and struggle to tackle these situational safety challenges all at once, highlighting a key area for future research. Furthermore, we develop multi-agent pipelines to coordinately solve safety challenges, which shows consistent improvement in safety over the original MLLM response. Code and data: this http URL. [Submitted on 8 Oct 2024 (v1), last revised 22 Apr 2025 (this version, v2)]

OmniScience: A Domain-Specialized LLM for Scientific Reasoning and Discovery
Vignesh Prabhakar, Md Amirul Islam, Adam Atanas, Yao-Ting Wang, Joah Han, Aastha Jhunjhunwala, Rucha Apte, Robert Clark, Kang Xu, Zihan Wang, Kai Liu
Large Language Models (LLMs) have demonstrated remarkable potential in advancing scientific knowledge and addressing complex challenges. In this work, we introduce OmniScience, a specialized large reasoning model for general science, developed through three key components: (1) domain adaptive pretraining on a carefully curated corpus of scientific literature, (2) instruction tuning on a specialized dataset to guide the model in following domain-specific tasks, and (3) reasoning-based knowledge distillation through fine-tuning to significantly enhance its ability to generate contextually relevant and logically sound responses. We demonstrate the versatility of OmniScience by developing a battery agent that efficiently ranks molecules as potential electrolyte solvents or additives. Comprehensive evaluations reveal that OmniScience is competitive with state-of-the-art large reasoning models on the GPQA Diamond and domain-specific battery benchmarks, while outperforming all public reasoning and non-reasoning models with similar parameter counts. We further demonstrate via ablation experiments that domain adaptive pretraining and reasoning-based knowledge distillation are critical to attain our performance levels, across benchmarks. [Submitted on 22 Mar 2025 (v1), last revised 22 Apr 2025 (this version, v4)]

TALES: Text Adventure Learning Environment Suite
Christopher Zhang Cui, Xingdi Yuan, Ziang Xiao, Prithviraj Ammanabrolu, Marc-Alexandre Côté
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at this https URL. [Submitted on 19 Apr 2025 (v1), last revised 23 Apr 2025 (this version, v3)]

ChatDBG: Augmenting Debugging with Large Language Models
Kyla H. Levin, Nicolas van Kempen, Emery D. Berger, Stephen N. Freund
Debugging is a critical but challenging task for programmers. This paper proposes ChatDBG, an AI-powered debugging assistant. ChatDBG integrates large language models (LLMs) to significantly enhance the capabilities and user-friendliness of conventional debuggers. ChatDBG lets programmers engage in a collaborative dialogue with the debugger, allowing them to pose complex questions about program state, perform root cause analysis for crashes or assertion failures, and explore open-ended queries like "why is x null?". To handle these queries, ChatDBG grants the LLM autonomy to "take the wheel": it can act as an independent agent capable of querying and controlling the debugger to navigate through stacks and inspect program state. It then reports its findings and yields back control to the programmer. By leveraging the real-world knowledge embedded in LLMs, ChatDBG can diagnose issues identifiable only through the use of domain-specific reasoning. Our ChatDBG prototype integrates with standard debuggers including LLDB and GDB for native code and Pdb for Python. Our evaluation across a diverse set of code, including C/C++ code with known bugs and a suite of Python code including standalone scripts and Jupyter notebooks, demonstrates that ChatDBG can successfully analyze root causes, explain bugs, and generate accurate fixes for a wide range of real-world errors. For the Python programs, a single query led to an actionable bug fix 67% of the time; one additional follow-up query increased the success rate to 85%. ChatDBG has seen rapid uptake; it has already been downloaded more than 75,000 times. [Submitted on 25 Mar 2024 (v1), last revised 23 Apr 2025 (this version, v4)]

Compositional 4D Dynamic Scenes Understanding with Physics Priors for Video Question Answering
Xingrui Wang, Wufei Ma, Angtian Wang, Shuo Chen, Adam Kortylewski, Alan Yuille
For vision-language models (VLMs), understanding the dynamic properties of objects and their interactions in 3D scenes from videos is crucial for effective reasoning about high-level temporal and action semantics. Although humans are adept at understanding these properties by constructing 3D and temporal (4D) representations of the world, current video understanding models struggle to extract these dynamic semantics, arguably because these models use cross-frame reasoning without underlying knowledge of the 3D/4D scenes. In this work, we introduce DynSuperCLEVR, the first video question answering dataset that focuses on language understanding of the dynamic properties of 3D objects. We concentrate on three physical concepts -- velocity, acceleration, and collisions within 4D scenes. We further generate three types of questions, including factual queries, future predictions, and counterfactual reasoning that involve different aspects of reasoning about these 4D dynamic properties. To further demonstrate the importance of explicit scene representations in answering these 4D dynamics questions, we propose NS-4DPhysics, a Neural-Symbolic VideoQA model integrating Physics prior for 4D dynamic properties with explicit scene representation of videos. Instead of answering the questions directly from the video text input, our method first estimates the 4D world states with a 3D generative model powered by physical priors, and then uses neural symbolic reasoning to answer the questions based on the 4D world states. Our evaluation on all three types of questions in DynSuperCLEVR shows that previous video question answering models and large multimodal models struggle with questions about 4D dynamics, while our NS-4DPhysics significantly outperforms previous state-of-the-art models. Our code and data are released in this https URL. [Submitted on 2 Jun 2024 (v1), last revised 23 Apr 2025 (this version, v2)]

SemioLLM: Evaluating Large Language Models for Diagnostic Reasoning from Unstructured Clinical Narratives in Epilepsy
Meghal Dani, Muthu Jeyanthi Prakash, Zeynep Akata, Stefanie Liebe
Large Language Models (LLMs) have been shown to encode clinical knowledge. Many evaluations, however, rely on structured question-answer benchmarks, overlooking critical challenges of interpreting and reasoning about unstructured clinical narratives in real-world settings. Using free-text clinical descriptions, we present SemioLLM, an evaluation framework that benchmarks 6 state-of-the-art models (GPT-3.5, GPT-4, Mixtral-8x7B, Qwen-72B, LlaMa2, LlaMa3) on a core diagnostic task in epilepsy. Leveraging a database of 1,269 seizure descriptions, we show that most LLMs are able to accurately and confidently generate probabilistic predictions of seizure onset zones in the brain. Most models approach clinician-level performance after prompt engineering, with expert-guided chain-of-thought reasoning leading to the most consistent improvements. Performance was further strongly modulated by clinical in-context impersonation, narrative length and language context (13.7%, 32.7% and 14.2% performance variation, respectively). However, expert analysis of reasoning outputs revealed that correct prediction can be based on hallucinated knowledge and deficient source citation accuracy, underscoring the need to improve interpretability of LLMs in clinical use. Overall, SemioLLM provides a scalable, domain-adaptable framework for evaluating LLMs in clinical disciplines where unstructured verbal descriptions encode diagnostic information. By identifying both the strengths and limitations of state-of-the-art models, our work supports the development of clinically robust and globally applicable AI systems for healthcare. [Submitted on 3 Jul 2024 (v1), last revised 23 Apr 2025 (this version, v2)]

MEG: Medical Knowledge-Augmented Large Language Models for Question Answering
Laura Cabello, Carmen Martin-Turrero, Uchenna Akujuobi, Anders Søgaard, Carlos Bobed
Question answering is a natural language understanding task that involves reasoning over both explicit context, and unstated relevant domain knowledge. Despite the high cost of training, large language models (LLMs) -- the backbone of most modern question-answering systems -- still struggle to reliably capture the nuanced relationships between concepts that are crucial for reasoning in specialized fields like medicine. In this work, we present MEG, a parameter-efficient approach for medical knowledge-augmented LLMs. MEG uses a lightweight mapping network to incorporate knowledge graph embeddings into the LLM, enabling it to leverage external knowledge in a cost-effective way. We evaluate our method on four popular medical multiple-choice datasets and show that LLMs i) can effectively interpret knowledge graph embeddings and ii) gain significant advantages from the factual grounding these embeddings provide. MEG attains an average of +6.7% and +9.9% accuracy over specialized models like BioMistral-7B and MediTron-7B, respectively. Finally, we show that MEG's performance remains robust to the choice of graph encoder. [Submitted on 6 Nov 2024 (v1), last revised 22 Apr 2025 (this version, v3)]

GOT4Rec: Graph of Thoughts for Sequential Recommendation
Zewen Long, Liang Wang, Shu Wu, Qiang Liu, Liang Wang
With their vast open-world knowledge and reasoning abilities, large language models (LLMs) have become a promising tool for sequential recommendation. Researchers have explored various methods to harness these capabilities, but most existing approaches rely on simple input-output prompting, failing to effectively bridge the gap between LLMs' general knowledge and the specific needs of recommendation tasks. While reasoning strategies like chain-of-thought (CoT) have been introduced to enhance performance, they often produce inaccurate recommendations due to underutilized user preference information and insufficient reasoning depth. To address these challenges, we propose GOT4Rec, a novel sequential recommendation method leveraging the graph of thoughts (GoT) reasoning strategy. Our method focuses on three key types of information in user histories: short-term interests, long-term interests and collaborative information from other users. It enables LLMs to reason independently and generate recommendations, subsequently aggregating results to derive final items. This method allows LLMs, with enhanced reasoning capabilities, to better utilize the user sequence information, producing more accurate recommendations and comprehensive explanations. Extensive experiments on real-world datasets demonstrate the effectiveness of GOT4Rec, outperforming existing state-of-the-art baselines with an average improvement of 37.11%. Our code is available at this https URL. [Submitted on 22 Nov 2024 (v1), last revised 23 Apr 2025 (this version, v2)]

7B Fully Open Source Moxin-LLM -- From Pretraining to GRPO-based Reinforcement Learning Enhancement
Pu Zhao, Xuan Shen, Zhenglun Kong, Yixin Shen, Sung-En Chang, Timothy Rupprecht, Lei Lu, Enfu Nan, Changdi Yang, Yumei He, Weiyan Shi, Xingchen Xu, Yu Huang, Wei Jiang, Wei Wang, Yue Chen, Yong He, Yanzhi Wang
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed, adhering to principles of open science, open source, open data, and open access. We release the pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints, aiming to make continuous commitments to fully open-source LLMs. After pre-training and obtaining the base model, we finetune the Moxin Base model with SOTA post-training framework and instruction data to obtain Moxin Instruct model. To improve the reasoning capability, we further finetune our Instruct model with chain-of-thought data distilled from DeepSeek R1, and then use Group Relative Policy Optimization (GRPO), an efficient and effective reinforcement learning algorithm following DeepSeek R1, to finetune our model, leading to the Moxin Reasoning model. Experiments show that our models achieve superior performance in various evaluations such as zero-shot evaluation, few-shot evaluation, and CoT evaluation. [Submitted on 8 Dec 2024 (v1), last revised 23 Apr 2025 (this version, v4)]

Discover physical concepts and equations with machine learning
Bao-Bing Li, Yi Gu, Shao-Feng Wu
Machine learning can uncover physical concepts or physical equations when prior knowledge from the other is available. However, these two aspects are often intertwined and cannot be discovered independently. We extend SciNet, which is a neural network architecture that simulates the human physical reasoning process for physics discovery, by proposing a model that combines Variational Autoencoders (VAE) with Neural Ordinary Differential Equations (Neural ODEs). This allows us to simultaneously discover physical concepts and governing equations from simulated experimental data across various physical systems. We apply the model to several examples inspired by the history of physics, including Copernicus' heliocentrism, Newton's law of gravity, Schrödinger's wave mechanics, and Pauli's spin-magnetic formulation. The results demonstrate that the correct physical theories can emerge in the neural network. [Submitted on 11 Dec 2024 (v1), last revised 22 Apr 2025 (this version, v2)]

MediSee: Reasoning-based Pixel-level Perception in Medical Images
Qinyue Tong, Ziqian Lu, Jun Liu, Yangming Zheng, Zheming Lu
Despite remarkable advancements in pixel-level medical image perception, existing methods are either limited to specific tasks or heavily rely on accurate bounding boxes or text labels as input prompts. However, the medical knowledge required for input is a huge obstacle for general public, which greatly reduces the universality of these methods. Compared with these domain-specialized auxiliary information, general users tend to rely on oral queries that require logical reasoning. In this paper, we introduce a novel medical vision task: Medical Reasoning Segmentation and Detection (MedSD), which aims to comprehend implicit queries about medical images and generate the corresponding segmentation mask and bounding box for the target object. To accomplish this task, we first introduce a Multi-perspective, Logic-driven Medical Reasoning Segmentation and Detection (MLMR-SD) dataset, which encompasses a substantial collection of medical entity targets along with their corresponding reasoning. Furthermore, we propose MediSee, an effective baseline model designed for medical reasoning segmentation and detection. The experimental results indicate that the proposed method can effectively address MedSD with implicit colloquial queries and outperform traditional medical referring segmentation methods. [Submitted on 15 Apr 2025 (v1), last revised 23 Apr 2025 (this version, v2)]

Chain-of-Thought Textual Reasoning for Few-shot Temporal Action Localization
Hongwei Ji, Wulian Yun, Mengshi Qi, Huadong Ma
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the localization task. Therefore, we propose a new few-shot temporal action localization method by Chain-of-Thought textual reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework that leverages textual semantic information to enhance the model's ability to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level to assist action localization, we design a Chain of Thought (CoT)-like reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoT-like text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3 and THUMOS14 datasets. We introduce the first dataset named Human-related Anomaly Localization and explore the application of the TAL task in human anomaly detection. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. We will release our code, data and benchmark. [Submitted on 18 Apr 2025 (v1), last revised 23 Apr 2025 (this version, v2)]

NLG
ConTextual: Improving Clinical Text Summarization in LLMs with Context-preserving Token Filtering and Knowledge Graphs

Fahmida Liza Piya, Rahmatollah Beheshti
Unstructured clinical data can serve as a unique and rich source of information that can meaningfully inform clinical practice. Extracting the most pertinent context from such data is critical for exploiting its true potential toward optimal and timely decision-making in patient care. While prior research has explored various methods for clinical text summarization, most prior studies either process all input tokens uniformly or rely on heuristic-based filters, which can overlook nuanced clinical cues and fail to prioritize information critical for decision-making. In this study, we propose Contextual, a novel framework that integrates a Context-Preserving Token Filtering method with a Domain-Specific Knowledge Graph (KG) for contextual augmentation. By preserving context-specific important tokens and enriching them with structured knowledge, ConTextual improves both linguistic coherence and clinical fidelity. Our extensive empirical evaluations on two public benchmark datasets demonstrate that ConTextual consistently outperforms other baselines. Our proposed approach highlights the complementary role of token-level filtering and structured retrieval in enhancing both linguistic and clinical integrity, as well as offering a scalable solution for improving precision in clinical text generation. [Submitted on 23 Apr 2025]

How Effective are Generative Large Language Models in Performing Requirements Classification?

Waad Alhoshan, Alessio Ferrari, Liping Zhao
In recent years, transformer-based large language models (LLMs) have revolutionised natural language processing (NLP), with generative models opening new possibilities for tasks that require context-aware text generation. Requirements engineering (RE) has also seen a surge in the experimentation of LLMs for different tasks, including trace-link detection, regulatory compliance, and others. Requirements classification is a common task in RE. While non-generative LLMs like BERT have been successfully applied to this task, there has been limited exploration of generative LLMs. This gap raises an important question: how well can generative LLMs, which produce context-aware outputs, perform in requirements classification? In this study, we explore the effectiveness of three generative LLMs-Bloom, Gemma, and Llama-in performing both binary and multi-class requirements classification. We design an extensive experimental study involving over 400 experiments across three widely used datasets (PROMISE NFR, Functional-Quality, and SecReq). Our study concludes that while factors like prompt design and LLM architecture are universally important, others-such as dataset variations-have a more situational impact, depending on the complexity of the classification task. This insight can guide future model development and deployment strategies, focusing on optimising prompt structures and aligning model architectures with task-specific needs for improved performance. [Submitted on 23 Apr 2025]

MedMax: Mixed-Modal Instruction Tuning for Training Biomedical Assistants

Hritik Bansal, Daniel Israel, Siyan Zhao, Shufan Li, Tung Nguyen, Aditya Grover
Recent advancements in mixed-modal generative have opened new avenues for developing unified biomedical assistants capable of analyzing biomedical images, answering complex questions about them, and generating multimodal patient reports. However, existing datasets face challenges such as small sizes, limited coverage of biomedical tasks and domains, and a reliance on narrow sources. To address these gaps, we present MedMax, a large-scale multimodal biomedical instruction-tuning dataset for mixed-modal foundation models. With 1.47 million instances, MedMax encompasses a diverse range of tasks, including interleaved image-text generation, biomedical image captioning and generation, visual chat, and report understanding. These tasks span knowledge across diverse biomedical domains, including radiology and histopathology, grounded in medical papers and YouTube videos. Subsequently, we fine-tune a mixed-modal foundation model on the MedMax dataset, achieving significant performance improvements: a 26% gain over the Chameleon model and an 18.3% improvement over GPT-4o across 12 downstream biomedical visual question-answering tasks. Finally, we introduce a unified evaluation suite for biomedical tasks to guide the development of mixed-modal biomedical AI assistants. The data, model, and code is available at this https URL. [Submitted on 17 Dec 2024 (v1), last revised 23 Apr 2025 (this version, v2)]

Multimodal
BrainPrompt: Multi-Level Brain Prompt Enhancement for Neurological Condition Identification
Jiaxing Xu, Kai He, Yue Tang, Wei Li, Mengcheng Lan, Xia Dong, Yiping Ke, Mengling Feng
Neurological conditions, such as Alzheimer's Disease, are challenging to diagnose, particularly in the early stages where symptoms closely resemble healthy controls. Existing brain network analysis methods primarily focus on graph-based models that rely solely on imaging data, which may overlook important non-imaging factors and limit the model's predictive power and interpretability. In this paper, we present BrainPrompt, an innovative framework that enhances Graph Neural Networks (GNNs) by integrating Large Language Models (LLMs) with knowledge-driven prompts, enabling more effective capture of complex, non-imaging information and external knowledge for neurological disease identification. BrainPrompt integrates three types of knowledge-driven prompts: (1) ROI-level prompts to encode the identity and function of each brain region, (2) subject-level prompts that incorporate demographic information, and (3) disease-level prompts to capture the temporal progression of disease. By leveraging these multi-level prompts, BrainPrompt effectively harnesses knowledge-enhanced multi-modal information from LLMs, enhancing the model's capability to predict neurological disease stages and meanwhile offers more interpretable results. We evaluate BrainPrompt on two resting-state functional Magnetic Resonance Imaging (fMRI) datasets from neurological disorders, showing its superiority over state-of-the-art methods. Additionally, a biomarker study demonstrates the framework's ability to extract valuable and interpretable information aligned with domain knowledge in neuroscience. [Submitted on 12 Apr 2025]

Disentangling and Generating Modalities for Recommendation in Missing Modality Scenarios
Jiwan Kim, Hongseok Kang, Sein Kim, Kibum Kim, Chanyoung Park
Multi-modal recommender systems (MRSs) have achieved notable success in improving personalization by leveraging diverse modalities such as images, text, and audio. However, two key challenges remain insufficiently addressed: (1) Insufficient consideration of missing modality scenarios and (2) the overlooking of unique characteristics of modality features. These challenges result in significant performance degradation in realistic situations where modalities are missing. To address these issues, we propose Disentangling and Generating Modality Recommender (DGMRec), a novel framework tailored for missing modality scenarios. DGMRec disentangles modality features into general and specific modality features from an information-based perspective, enabling richer representations for recommendation. Building on this, it generates missing modality features by integrating aligned features from other modalities and leveraging user modality preferences. Extensive experiments show that DGMRec consistently outperforms state-of-the-art MRSs in challenging scenarios, including missing modalities and new item settings as well as diverse missing ratios and varying levels of missing modalities. Moreover, DGMRec's generation-based approach enables cross-modal retrieval, a task inapplicable for existing MRSs, highlighting its adaptability and potential for real-world applications. Our code is available at this https URL. [Submitted on 23 Apr 2025]

A Survey of Foundation Model-Powered Recommender Systems: From Feature-Based, Generative to Agentic Paradigms
Chengkai Huang, Hongtao Huang, Tong Yu, Kaige Xie, Junda Wu, Shuai Zhang, Julian Mcauley, Dietmar Jannach, Lina Yao
Recommender systems (RS) have become essential in filtering information and personalizing content for users. RS techniques have traditionally relied on modeling interactions between users and items as well as the features of content using models specific to each task. The emergence of foundation models (FMs), large scale models trained on vast amounts of data such as GPT, LLaMA and CLIP, is reshaping the recommendation paradigm. This survey provides a comprehensive overview of the Foundation Models for Recommender Systems (FM4RecSys), covering their integration in three paradigms: (1) Feature-Based augmentation of representations, (2) Generative recommendation approaches, and (3) Agentic interactive systems. We first review the data foundations of RS, from traditional explicit or implicit feedback to multimodal content sources. We then introduce FMs and their capabilities for representation learning, natural language understanding, and multi-modal reasoning in RS contexts. The core of the survey discusses how FMs enhance RS under different paradigms. Afterward, we examine FM applications in various recommendation tasks. Through an analysis of recent research, we highlight key opportunities that have been realized as well as challenges encountered. Finally, we outline open research directions and technical challenges for next-generation FM4RecSys. This survey not only reviews the state-of-the-art methods but also provides a critical analysis of the trade-offs among the feature-based, the generative, and the agentic paradigms, outlining key open issues and future research directions. [Submitted on 23 Apr 2025]

Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Hanlei Zhang, Zhuohang Li, Yeshuang Zhu, Hua Xu, Peiwu Wang, Jinchao Zhang, Jie Zhou, Haige Zhu
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at this https URL. [Submitted on 23 Apr 2025]

Think Hierarchically, Act Dynamically: Hierarchical Multi-modal Fusion and Reasoning for Vision-and-Language Navigation
Junrong Yue, Yifan Zhang, Chuan Qin, Bo Li, Xiaomin Lie, Xinlei Yu, Wenxin Zhang, Zhendong Zhao
Vision-and-Language Navigation (VLN) aims to enable embodied agents to follow natural language instructions and reach target locations in real-world environments. While prior methods often rely on either global scene representations or object-level features, these approaches are insufficient for capturing the complex interactions across modalities required for accurate navigation. In this paper, we propose a Multi-level Fusion and Reasoning Architecture (MFRA) to enhance the agent's ability to reason over visual observations, language instructions and navigation history. Specifically, MFRA introduces a hierarchical fusion mechanism that aggregates multi-level features-ranging from low-level visual cues to high-level semantic concepts-across multiple modalities. We further design a reasoning module that leverages fused representations to infer navigation actions through instruction-guided attention and dynamic context integration. By selectively capturing and combining relevant visual, linguistic, and temporal signals, MFRA improves decision-making accuracy in complex navigation scenarios. Extensive experiments on benchmark VLN datasets including REVERIE, R2R, and SOON demonstrate that MFRA achieves superior performance compared to state-of-the-art methods, validating the effectiveness of multi-level modal fusion for embodied navigation. [Submitted on 23 Apr 2025]

PsyCounAssist: A Full-Cycle AI-Powered Psychological Counseling Assistant System
Xianghe Liu, Jiaqi Xu, Tao Sun
Psychological counseling is a highly personalized and dynamic process that requires therapists to continuously monitor emotional changes, document session insights, and maintain therapeutic continuity. In this paper, we introduce PsyCounAssist, a comprehensive AI-powered counseling assistant system specifically designed to augment psychological counseling practices. PsyCounAssist integrates multimodal emotion recognition combining speech and photoplethysmography (PPG) signals for accurate real-time affective analysis, automated structured session reporting using large language models (LLMs), and personalized AI-generated follow-up support. Deployed on Android-based tablet devices, the system demonstrates practical applicability and flexibility in real-world counseling scenarios. Experimental evaluation confirms the reliability of PPG-based emotional classification and highlights the system's potential for non-intrusive, privacy-aware emotional support. PsyCounAssist represents a novel approach to ethically and effectively integrating AI into psychological counseling workflows. [Submitted on 23 Apr 2025]

MMHCL: Multi-Modal Hypergraph Contrastive Learning for Recommendation
Xu Guo, Tong Zhang, Fuyun Wang, Xudong Wang, Xiaoya Zhang, Xin Liu, Zhen Cui
The burgeoning presence of multimodal content-sharing platforms propels the development of personalized recommender systems. Previous works usually suffer from data sparsity and cold-start problems, and may fail to adequately explore semantic user-product associations from multimodal data. To address these issues, we propose a novel Multi-Modal Hypergraph Contrastive Learning (MMHCL) framework for user recommendation. For a comprehensive information exploration from user-product relations, we construct two hypergraphs, i.e. a user-to-user (u2u) hypergraph and an item-to-item (i2i) hypergraph, to mine shared preferences among users and intricate multimodal semantic resemblance among items, respectively. This process yields denser second-order semantics that are fused with first-order user-item interaction as complementary to alleviate the data sparsity issue. Then, we design a contrastive feature enhancement paradigm by applying synergistic contrastive learning. By maximizing/minimizing the mutual information between second-order (e.g. shared preference pattern for users) and first-order (information of selected items for users) embeddings of the same/different users and items, the feature distinguishability can be effectively enhanced. Compared with using sparse primary user-item interaction only, our MMHCL obtains denser second-order hypergraphs and excavates more abundant shared attributes to explore the user-product associations, which to a certain extent alleviates the problems of data sparsity and cold-start. Extensive experiments have comprehensively demonstrated the effectiveness of our method. Our code is publicly available at: this https URL. [Submitted on 23 Apr 2025]

Detecting and Understanding Hateful Contents in Memes Through Captioning and Visual Question-Answering
Ali Anaissi, Junaid Akram, Kunal Chaturvedi, Ali Braytee
Memes are widely used for humor and cultural commentary, but they are increasingly exploited to spread hateful content. Due to their multimodal nature, hateful memes often evade traditional text-only or image-only detection systems, particularly when they employ subtle or coded references. To address these challenges, we propose a multimodal hate detection framework that integrates key components: OCR to extract embedded text, captioning to describe visual content neutrally, sub-label classification for granular categorization of hateful content, RAG for contextually relevant retrieval, and VQA for iterative analysis of symbolic and contextual cues. This enables the framework to uncover latent signals that simpler pipelines fail to detect. Experimental results on the Facebook Hateful Memes dataset reveal that the proposed framework exceeds the performance of unimodal and conventional multimodal models in both accuracy and AUC-ROC. [Submitted on 23 Apr 2025]

V$^2$R-Bench: Holistically Evaluating LVLM Robustness to Fundamental Visual Variations
Zhiyuan Fan, Yumeng Wang, Sandeep Polisetty, Yi R. (May)Fung
Large Vision Language Models (LVLMs) excel in various vision-language tasks. Yet, their robustness to visual variations in position, scale, orientation, and context that objects in natural scenes inevitably exhibit due to changes in viewpoint and environment remains largely underexplored. To bridge this gap, we introduce V$^2$R-Bench, a comprehensive benchmark framework for evaluating Visual Variation Robustness of LVLMs, which encompasses automated evaluation dataset generation and principled metrics for thorough robustness assessment. Through extensive evaluation on 21 LVLMs, we reveal a surprising vulnerability to visual variations, in which even advanced models that excel at complex vision-language tasks significantly underperform on simple tasks such as object recognition. Interestingly, these models exhibit a distinct visual position bias that contradicts theories of effective receptive fields, and demonstrate a human-like visual acuity threshold. To identify the source of these vulnerabilities, we present a systematic framework for component-level analysis, featuring a novel visualization approach for aligned visual features. Results show that these vulnerabilities stem from error accumulation in the pipeline architecture and inadequate multimodal alignment. Complementary experiments with synthetic data further demonstrate that these limitations are fundamentally architectural deficiencies, scoring the need for architectural innovations in future LVLM designs. [Submitted on 23 Apr 2025]

Towards Explainable AI: Multi-Modal Transformer for Video-based Image Description Generation
Lakshita Agarwal, Bindu Verma
Understanding and analyzing video actions are essential for producing insightful and contextualized descriptions, especially for video-based applications like intelligent monitoring and autonomous systems. The proposed work introduces a novel framework for generating natural language descriptions from video datasets by combining textual and visual modalities. The suggested architecture makes use of ResNet50 to extract visual features from video frames that are taken from the Microsoft Research Video Description Corpus (MSVD), and Berkeley DeepDrive eXplanation (BDD-X) datasets. The extracted visual characteristics are converted into patch embeddings and then run through an encoder-decoder model based on Generative Pre-trained Transformer-2 (GPT-2). In order to align textual and visual representations and guarantee high-quality description production, the system uses multi-head self-attention and cross-attention techniques. The model's efficacy is demonstrated by performance evaluation using BLEU (1-4), CIDEr, METEOR, and ROUGE-L. The suggested framework outperforms traditional methods with BLEU-4 scores of 0.755 (BDD-X) and 0.778 (MSVD), CIDEr scores of 1.235 (BDD-X) and 1.315 (MSVD), METEOR scores of 0.312 (BDD-X) and 0.329 (MSVD), and ROUGE-L scores of 0.782 (BDD-X) and 0.795 (MSVD). By producing human-like, contextually relevant descriptions, strengthening interpretability, and improving real-world applications, this research advances explainable AI. [Submitted on 23 Apr 2025]

Improving Significant Wave Height Prediction Using Chronos Models
Yilin Zhai, Hongyuan Shi, Chao Zhan, Qing Wang, Zaijin You, Nan Wang
Accurate wave height prediction is critical for maritime safety and coastal resilience, yet conventional physics-based models and traditional machine learning methods face challenges in computational efficiency and nonlinear dynamics modeling. This study introduces Chronos, the first implementation of a large language model (LLM)-powered temporal architecture (Chronos) optimized for wave forecasting. Through advanced temporal pattern recognition applied to historical wave data from three strategically chosen marine zones in the Northwest Pacific basin, our framework achieves multimodal improvements: (1) 14.3% reduction in training time with 2.5x faster inference speed compared to PatchTST baselines, achieving 0.575 mean absolute scaled error (MASE) units; (2) superior short-term forecasting (1-24h) across comprehensive metrics; (3) sustained predictive leadership in extended-range forecasts (1-120h); and (4) demonstrated zero-shot capability maintaining median performance (rank 4/12) against specialized operational models. This LLM-enhanced temporal modeling paradigm establishes a new standard in wave prediction, offering both computationally efficient solutions and a transferable framework for complex geophysical systems modeling. [Submitted on 23 Apr 2025]

Latent Diffusion Planning for Imitation Learning
Amber Xie, Oleh Rybkin, Dorsa Sadigh, Chelsea Finn
Recent progress in imitation learning has been enabled by policy architectures that scale to complex visuomotor tasks, multimodal distributions, and large datasets. However, these methods often rely on learning from large amount of expert demonstrations. To address these shortcomings, we propose Latent Diffusion Planning (LDP), a modular approach consisting of a planner which can leverage action-free demonstrations, and an inverse dynamics model which can leverage suboptimal data, that both operate over a learned latent space. First, we learn a compact latent space through a variational autoencoder, enabling effective forecasting of future states in image-based domains. Then, we train a planner and an inverse dynamics model with diffusion objectives. By separating planning from action prediction, LDP can benefit from the denser supervision signals of suboptimal and action-free data. On simulated visual robotic manipulation tasks, LDP outperforms state-of-the-art imitation learning approaches, as they cannot leverage such additional data. [Submitted on 23 Apr 2025]

Natural Language Processing in the Patent Domain: A Survey
Lekang Jiang, Stephan Goetz
Patents, which encapsulate crucial technical and legal information in text form and referenced drawings, present a rich domain for natural language processing (NLP) applications. As NLP technologies evolve, large language models (LLMs) have demonstrated outstanding capabilities in general text processing and generation tasks. However, the application of LLMs in the patent domain remains under-explored and under-developed due to the complexity of patents, particularly their language and legal framework. Understanding the unique characteristics of patent documents and related research in the patent domain becomes essential for researchers to apply these tools effectively. Therefore, this paper aims to equip NLP researchers with the essential knowledge to navigate this complex domain efficiently. We introduce the relevant fundamental aspects of patents to provide solid background information. In addition, we systematically break down the structural and linguistic characteristics unique to patents and map out how NLP can be leveraged for patent analysis and generation. Moreover, we demonstrate the spectrum of text-based and multimodal patent-related tasks, including nine patent analysis and four patent generation tasks. [Submitted on 6 Mar 2024 (v1), last revised 23 Apr 2025 (this version, v3)]

Multimodal Situational Safety
Kaiwen Zhou, Chengzhi Liu, Xuandong Zhao, Anderson Compalas, Dawn Song, Xin Eric Wang
Multimodal Large Language Models (MLLMs) are rapidly evolving, demonstrating impressive capabilities as multimodal assistants that interact with both humans and their environments. However, this increased sophistication introduces significant safety concerns. In this paper, we present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety, which explores how safety considerations vary based on the specific situation in which the user or agent is engaged. We argue that for an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context. To evaluate this capability, we develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs. The dataset comprises 1,820 language query-image pairs, half of which the image context is safe, and the other half is unsafe. We also develop an evaluation framework that analyzes key safety aspects, including explicit safety reasoning, visual understanding, and, crucially, situational safety reasoning. Our findings reveal that current MLLMs struggle with this nuanced safety problem in the instruction-following setting and struggle to tackle these situational safety challenges all at once, highlighting a key area for future research. Furthermore, we develop multi-agent pipelines to coordinately solve safety challenges, which shows consistent improvement in safety over the original MLLM response. Code and data: this http URL. [Submitted on 8 Oct 2024 (v1), last revised 22 Apr 2025 (this version, v2)]

MedMax: Mixed-Modal Instruction Tuning for Training Biomedical Assistants
Hritik Bansal, Daniel Israel, Siyan Zhao, Shufan Li, Tung Nguyen, Aditya Grover
Recent advancements in mixed-modal generative have opened new avenues for developing unified biomedical assistants capable of analyzing biomedical images, answering complex questions about them, and generating multimodal patient reports. However, existing datasets face challenges such as small sizes, limited coverage of biomedical tasks and domains, and a reliance on narrow sources. To address these gaps, we present MedMax, a large-scale multimodal biomedical instruction-tuning dataset for mixed-modal foundation models. With 1.47 million instances, MedMax encompasses a diverse range of tasks, including interleaved image-text generation, biomedical image captioning and generation, visual chat, and report understanding. These tasks span knowledge across diverse biomedical domains, including radiology and histopathology, grounded in medical papers and YouTube videos. Subsequently, we fine-tune a mixed-modal foundation model on the MedMax dataset, achieving significant performance improvements: a 26% gain over the Chameleon model and an 18.3% improvement over GPT-4o across 12 downstream biomedical visual question-answering tasks. Finally, we introduce a unified evaluation suite for biomedical tasks to guide the development of mixed-modal biomedical AI assistants. The data, model, and code is available at this https URL. [Submitted on 17 Dec 2024 (v1), last revised 23 Apr 2025 (this version, v2)]

Compositional 4D Dynamic Scenes Understanding with Physics Priors for Video Question Answering
Xingrui Wang, Wufei Ma, Angtian Wang, Shuo Chen, Adam Kortylewski, Alan Yuille
For vision-language models (VLMs), understanding the dynamic properties of objects and their interactions in 3D scenes from videos is crucial for effective reasoning about high-level temporal and action semantics. Although humans are adept at understanding these properties by constructing 3D and temporal (4D) representations of the world, current video understanding models struggle to extract these dynamic semantics, arguably because these models use cross-frame reasoning without underlying knowledge of the 3D/4D scenes. In this work, we introduce DynSuperCLEVR, the first video question answering dataset that focuses on language understanding of the dynamic properties of 3D objects. We concentrate on three physical concepts -- velocity, acceleration, and collisions within 4D scenes. We further generate three types of questions, including factual queries, future predictions, and counterfactual reasoning that involve different aspects of reasoning about these 4D dynamic properties. To further demonstrate the importance of explicit scene representations in answering these 4D dynamics questions, we propose NS-4DPhysics, a Neural-Symbolic VideoQA model integrating Physics prior for 4D dynamic properties with explicit scene representation of videos. Instead of answering the questions directly from the video text input, our method first estimates the 4D world states with a 3D generative model powered by physical priors, and then uses neural symbolic reasoning to answer the questions based on the 4D world states. Our evaluation on all three types of questions in DynSuperCLEVR shows that previous video question answering models and large multimodal models struggle with questions about 4D dynamics, while our NS-4DPhysics significantly outperforms previous state-of-the-art models. Our code and data are released in this https URL. [Submitted on 2 Jun 2024 (v1), last revised 23 Apr 2025 (this version, v2)]

X-SG$^2$S: Safe and Generalizable Gaussian Splatting with X-dimensional Watermarks
Zihang Cheng, Huiping Zhuang, Chun Li, Xin Meng, Ming Li, Fei Richard Yu, Liqiang Nie
3D Gaussian Splatting (3DGS) has been widely used in 3D reconstruction and 3D generation. Training to get a 3DGS scene often takes a lot of time and resources and even valuable inspiration. The increasing amount of 3DGS digital asset have brought great challenges to the copyright protection. However, it still lacks profound exploration targeted at 3DGS. In this paper, we propose a new framework X-SG$^2$S which can simultaneously watermark 1 to 3D messages while keeping the original 3DGS scene almost unchanged. Generally, we have a X-SG$^2$S injector for adding multi-modal messages simultaneously and an extractor for extract them. Specifically, we first split the watermarks into message patches in a fixed manner and sort the 3DGS points. A self-adaption gate is used to pick out suitable location for watermarking. Then use a XD(multi-dimension)-injection heads to add multi-modal messages into sorted 3DGS points. A learnable gate can recognize the location with extra messages and XD-extraction heads can restore hidden messages from the location recommended by the learnable gate. Extensive experiments demonstrated that the proposed X-SG$^2$S can effectively conceal multi modal messages without changing pretrained 3DGS pipeline or the original form of 3DGS parameters. Meanwhile, with simple and efficient model structure and high practicality, X-SG$^2$S still shows good performance in hiding and extracting multi-modal inner structured or unstructured messages. X-SG$^2$S is the first to unify 1 to 3D watermarking model for 3DGS and the first framework to add multi-modal watermarks simultaneous in one 3DGS which pave the wave for later researches. [Submitted on 13 Feb 2025 (v1), last revised 23 Apr 2025 (this version, v2)]

2025-04-23
Creative
Do It For Me vs. Do It With Me: Investigating User Perceptions of Different Paradigms of Automation in Copilots for Feature-Rich Software
Anjali Khurana, Xiaotian Su, April Yi Wang, Parmit K Chilana
Large Language Model (LLM)-based in-application assistants, or copilots, can automate software tasks, but users often prefer learning by doing, raising questions about the optimal level of automation for an effective user experience. We investigated two automation paradigms by designing and implementing a fully automated copilot (AutoCopilot) and a semi-automated copilot (GuidedCopilot) that automates trivial steps while offering step-by-step visual guidance. In a user study (N=20) across data analysis and visual design tasks, GuidedCopilot outperformed AutoCopilot in user control, software utility, and learnability, especially for exploratory and creative tasks, while AutoCopilot saved time for simpler visual tasks. A follow-up design exploration (N=10) enhanced GuidedCopilot with task-and state-aware features, including in-context preview clips and adaptive instructions. Our findings highlight the critical role of user control and tailored guidance in designing the next generation of copilots that enhance productivity, support diverse skill levels, and foster deeper software engagement. [Submitted on 22 Apr 2025]

Automated Creativity Evaluation for Large Language Models: A Reference-Based Approach
Ruizhe Li, Chiwei Zhu, Benfeng Xu, Xiaorui Wang, Zhendong Mao
Creative writing is a key capability of Large Language Models (LLMs), with potential applications in literature, storytelling, and various creative domains. However, evaluating the creativity of machine-generated texts remains a significant challenge, as existing methods either rely on costly manual annotations or fail to align closely with human assessments. In this paper, we propose an effective automated evaluation method based on the Torrance Test of Creative Writing (TTCW), which evaluates creativity as product. Our method employs a reference-based Likert-style approach, scoring generated creative texts relative to high-quality reference texts across various tests. Experimental results demonstrate that our method significantly improves the alignment between LLM evaluations and human assessments, achieving a pairwise accuracy of 0.75 (+15\%). [Submitted on 22 Apr 2025]

Regional Tiny Stories: Using Small Models to Compare Language Learning and Tokenizer Performance
Nirvan Patil, Malhar Abhay Inamdar, Agnivo Gosai, Guruprasad Pathak, Anish Joshi, Aryan Sagavekar, Anish Joshirao, Raj Dandekar, Rajat Dandekar, Sreedath Panat
Small Language Models (SLMs) offer efficient alternatives to LLMs for specific domains. The 2023 TinyStories study developed an English dataset that allows SLMs with 1 to 10 million parameters to produce coherent outputs. Our research expands this framework by translating the original dataset into Indian languages and creating synthetic data using LLMs. We focus on Hindi, Marathi, and Bengali, evaluating SLMs for regional language processing and understanding linguistic complexity. We show that SLMs efficiently process regional languages with significantly fewer parameters than LLMs, providing a complementary framework for ``inference based evaluation" of tokenization strategies and linguistic complexity. Our analysis shows that language-specific tokenizers outperform general-purpose ones for Indian languages. Empirical validations, supported by information-theoretic and morphological analyses, provides fundamental understanding behind the better performance of Hindi models over Marathi and Bengali. Additionally, we show that synthetic datasets outperform translated content for training SLMs. Correlation analyses reveal cross-linguistic patterns and language-specific relationships between creativity, grammatical precision, and narrative completeness. These findings advance both the practical application of SLMs to underserved languages and our theoretical understanding of neural language development. [Submitted on 7 Apr 2025 (v1), last revised 22 Apr 2025 (this version, v2)]

Expanding the Generative AI Design Space through Structured Prompting and Multimodal Interfaces
Nimisha Karnatak, Adrien Baranes, Rob Marchant, Huinan Zeng, Tríona Butler, Kristen Olson
Text-based prompting remains the predominant interaction paradigm in generative AI, yet it often introduces friction for novice users such as small business owners (SBOs), who struggle to articulate creative goals in domain-specific contexts like advertising. Through a formative study with six SBOs in the United Kingdom, we identify three key challenges: difficulties in expressing brand intuition through prompts, limited opportunities for fine-grained adjustment and refinement during and after content generation, and the frequent production of generic content that lacks brand specificity. In response, we present ACAI (AI Co-Creation for Advertising and Inspiration), a multimodal generative AI tool designed to support novice designers by moving beyond traditional prompt interfaces. ACAI features a structured input system composed of three panels: Branding, Audience and Goals, and the Inspiration Board. These inputs allow users to convey brand-relevant context and visual preferences. This work contributes to HCI research on generative systems by showing how structured interfaces can foreground user-defined context, improve alignment, and enhance co-creative control in novice creative workflows. [Submitted on 19 Apr 2025 (v1), last revised 22 Apr 2025 (this version, v2)]

Reasoning
Can Machine Learning Agents Deal with Hard Choices?
Kangyu Wang
Machine Learning ML agents have been increasingly used in decision-making across a wide range of tasks and environments. These ML agents are typically designed to balance multiple objectives when making choices. Understanding how their decision-making processes align with or diverge from human reasoning is essential. Human agents often encounter hard choices, that is, situations where options are incommensurable; neither option is preferred, yet the agent is not indifferent between them. In such cases, human agents can identify hard choices and resolve them through deliberation. In contrast, current ML agents, due to fundamental limitations in Multi-Objective Optimisation or MOO methods, cannot identify hard choices, let alone resolve them. Neither Scalarised Optimisation nor Pareto Optimisation, the two principal MOO approaches, can capture incommensurability. This limitation generates three distinct alignment problems: the alienness of ML decision-making behaviour from a human perspective; the unreliability of preference-based alignment strategies for hard choices; and the blockage of alignment strategies pursuing multiple objectives. Evaluating two potential technical solutions, I recommend an ensemble solution that appears most promising for enabling ML agents to identify hard choices and mitigate alignment problems. However, no known technique allows ML agents to resolve hard choices through deliberation, as they cannot autonomously change their goals. This underscores the distinctiveness of human agency and urges ML researchers to reconceptualise machine autonomy and develop frameworks and methods that can better address this fundamental gap. [Submitted on 18 Apr 2025]

PolicyEvol-Agent: Evolving Policy via Environment Perception and Self-Awareness with Theory of Mind
Yajie Yu, Yue Feng
Multi-agents has exhibited significant intelligence in real-word simulations with Large language models (LLMs) due to the capabilities of social cognition and knowledge retrieval. However, existing research on agents equipped with effective cognition chains including reasoning, planning, decision-making and reflecting remains limited, especially in the dynamically interactive scenarios. In addition, unlike human, prompt-based responses face challenges in psychological state perception and empirical calibration during uncertain gaming process, which can inevitably lead to cognition bias. In light of above, we introduce PolicyEvol-Agent, a comprehensive LLM-empowered framework characterized by systematically acquiring intentions of others and adaptively optimizing irrational strategies for continual enhancement. Specifically, PolicyEvol-Agent first obtains reflective expertise patterns and then integrates a range of cognitive operations with Theory of Mind alongside internal and external perspectives. Simulation results, outperforming RL-based models and agent-based methods, demonstrate the superiority of PolicyEvol-Agent for final gaming victory. Moreover, the policy evolution mechanism reveals the effectiveness of dynamic guideline adjustments in both automatic and human evaluation. [Submitted on 20 Apr 2025]

Learning Adaptive Parallel Reasoning with Language Models
Jiayi Pan, Xiuyu Li, Long Lian, Charlie Snell, Yifei Zhou, Adam Yala, Trevor Darrell, Kurt Keutzer, Alane Suhr
Scaling inference-time computation has substantially improved the reasoning capabilities of language models. However, existing methods have significant limitations: serialized chain-of-thought approaches generate overly long outputs, leading to increased latency and exhausted context windows, while parallel methods such as self-consistency suffer from insufficient coordination, resulting in redundant computations and limited performance gains. To address these shortcomings, we propose Adaptive Parallel Reasoning (APR), a novel reasoning framework that enables language models to orchestrate both serialized and parallel computations end-to-end. APR generalizes existing reasoning methods by enabling adaptive multi-threaded inference using spawn() and join() operations. A key innovation is our end-to-end reinforcement learning strategy, optimizing both parent and child inference threads to enhance task success rate without requiring predefined reasoning structures. Experiments on the Countdown reasoning task demonstrate significant benefits of APR: (1) higher performance within the same context window (83.4% vs. 60.0% at 4k context); (2) superior scalability with increased computation (80.1% vs. 66.6% at 20k total tokens); (3) improved accuracy at equivalent latency (75.2% vs. 57.3% at approximately 5,000ms). APR represents a step towards enabling language models to autonomously optimize their reasoning processes through adaptive allocation of computation. [Submitted on 21 Apr 2025]

DianJin-R1: Evaluating and Enhancing Financial Reasoning in Large Language Models
Jie Zhu, Qian Chen, Huaixia Dou, Junhui Li, Lifan Guo, Feng Chen, Chi Zhang
Effective reasoning remains a core challenge for large language models (LLMs) in the financial domain, where tasks often require domain-specific knowledge, precise numerical calculations, and strict adherence to compliance rules. We propose DianJin-R1, a reasoning-enhanced framework designed to address these challenges through reasoning-augmented supervision and reinforcement learning. Central to our approach is DianJin-R1-Data, a high-quality dataset constructed from CFLUE, FinQA, and a proprietary compliance corpus (Chinese Compliance Check, CCC), combining diverse financial reasoning scenarios with verified annotations. Our models, DianJin-R1-7B and DianJin-R1-32B, are fine-tuned from Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct using a structured format that generates both reasoning steps and final answers. To further refine reasoning quality, we apply Group Relative Policy Optimization (GRPO), a reinforcement learning method that incorporates dual reward signals: one encouraging structured outputs and another rewarding answer correctness. We evaluate our models on five benchmarks: three financial datasets (CFLUE, FinQA, and CCC) and two general reasoning benchmarks (MATH-500 and GPQA-Diamond). Experimental results show that DianJin-R1 models consistently outperform their non-reasoning counterparts, especially on complex financial tasks. Moreover, on the real-world CCC dataset, our single-call reasoning models match or even surpass the performance of multi-agent systems that require significantly more computational cost. These findings demonstrate the effectiveness of DianJin-R1 in enhancing financial reasoning through structured supervision and reward-aligned learning, offering a scalable and practical solution for real-world applications. [Submitted on 22 Apr 2025]

TrustGeoGen: Scalable and Formal-Verified Data Engine for Trustworthy Multi-modal Geometric Problem Solving
Daocheng Fu, Zijun Chen, Renqiu Xia, Qi Liu, Yuan Feng, Hongbin Zhou, Renrui Zhang, Shiyang Feng, Peng Gao, Junchi Yan, Botian Shi, Bo Zhang, Yu Qiao
Mathematical geometric problem solving (GPS) often requires effective integration of multimodal information and verifiable logical coherence. Despite the fast development of large language models in general problem solving, it remains unresolved regarding with both methodology and benchmarks, especially given the fact that exiting synthetic GPS benchmarks are often not self-verified and contain noise and self-contradicted information due to the illusion of LLMs. In this paper, we propose a scalable data engine called TrustGeoGen for problem generation, with formal verification to provide a principled benchmark, which we believe lays the foundation for the further development of methods for GPS. The engine synthesizes geometric data through four key innovations: 1) multimodal-aligned generation of diagrams, textual descriptions, and stepwise solutions; 2) formal verification ensuring rule-compliant reasoning paths; 3) a bootstrapping mechanism enabling complexity escalation via recursive state generation and 4) our devised GeoExplore series algorithms simultaneously produce multi-solution variants and self-reflective backtracking traces. By formal logical verification, TrustGeoGen produces GeoTrust-200K dataset with guaranteed modality integrity, along with GeoTrust-test testset. Experiments reveal the state-of-the-art models achieve only 49.17\% accuracy on GeoTrust-test, demonstrating its evaluation stringency. Crucially, models trained on GeoTrust achieve OOD generalization on GeoQA, significantly reducing logical inconsistencies relative to pseudo-label annotated by OpenAI-o1. Our code is available at this https URL [Submitted on 22 Apr 2025]

Impact of Noise on LLM-Models Performance in Abstraction and Reasoning Corpus (ARC) Tasks with Model Temperature Considerations
Nikhil Khandalkar, Pavan Yadav, Krishna Shinde, Lokesh B. Ramegowda, Rajarshi Das
Recent advancements in Large Language Models (LLMs) have generated growing interest in their structured reasoning capabilities, particularly in tasks involving abstraction and pattern recognition. The Abstraction and Reasoning Corpus (ARC) benchmark plays a crucial role in evaluating these capabilities by testing how well AI models generalize to novel problems. While GPT-4o demonstrates strong performance by solving all ARC tasks under zero-noise conditions, other models like DeepSeek R1 and LLaMA 3.2 fail to solve any, suggesting limitations in their ability to reason beyond simple pattern matching. To explore this gap, we systematically evaluate these models across different noise levels and temperature settings. Our results reveal that the introduction of noise consistently impairs model performance, regardless of architecture. This decline highlights a shared vulnerability: current LLMs, despite showing signs of abstract reasoning, remain highly sensitive to input perturbations. Such fragility raises concerns about their real-world applicability, where noise and uncertainty are common. By comparing how different model architectures respond to these challenges, we offer insights into the structural weaknesses of modern LLMs in reasoning tasks. This work underscores the need for developing more robust and adaptable AI systems capable of handling the ambiguity and variability inherent in real-world scenarios. Our findings aim to guide future research toward enhancing model generalization, robustness, and alignment with human-like cognitive flexibility. [Submitted on 22 Apr 2025]

CAPTURe: Evaluating Spatial Reasoning in Vision Language Models via Occluded Object Counting
Atin Pothiraj, Elias Stengel-Eskin, Jaemin Cho, Mohit Bansal
Recognizing and reasoning about occluded (partially or fully hidden) objects is vital to understanding visual scenes, as occlusions frequently occur in real-world environments and act as obstacles for spatial comprehension. To test models' ability to reason about multiple occluded objects, we introduce a novel task, Counting Amodally for Patterns Through Unseen REgions (CAPTURe), which requires a model to count objects arranged in a pattern by inferring how the pattern continues behind an occluder (an object which blocks parts of the scene). CAPTURe requires both recognizing visual patterns and reasoning, making it a useful testbed for evaluating vision-language models (VLMs) on whether they understand occluded patterns and possess spatial understanding skills. By requiring models to reason about occluded objects, CAPTURe also tests VLMs' ability to form world models that would allow them to fill in missing information. CAPTURe consists of two parts: (1) CAPTURe-real, with manually filtered images of real objects in patterns and (2) CAPTURe-synthetic, a controlled diagnostic with generated patterned images. We evaluate four strong VLMs (GPT-4o, Intern-VL2, Molmo, and Qwen2-VL) on CAPTURe, finding that models struggle to count on both occluded and unoccluded patterns. Crucially, we find that models perform worse with occlusion, suggesting that VLMs are also deficient in inferring unseen spatial relationships: even the strongest VLMs like GPT-4o fail to count with occlusion. In contrast, we find that humans achieve very little error on CAPTURe. We also find that providing auxiliary information of occluded object locations increases performance, underscoring that the model error comes both from an inability to handle occlusion as well as difficulty counting in images. [Submitted on 21 Apr 2025]

Exploring Next Token Prediction in Theory of Mind (ToM) Tasks: Comparative Experiments with GPT-2 and LLaMA-2 AI Models
Pavan Yadav, Nikhil Khandalkar, Krishna Shinde, Lokesh B. Ramegowda, Rajarshi Das
Language models have made significant progress in generating coherent text and predicting next tokens based on input prompts. This study compares the next-token prediction performance of two well-known models: OpenAI's GPT-2 and Meta's Llama-2-7b-chat-hf on Theory of Mind (ToM) tasks. To evaluate their capabilities, we built a dataset from 10 short stories sourced from the Explore ToM Dataset. We enhanced these stories by programmatically inserting additional sentences (infills) using GPT-4, creating variations that introduce different levels of contextual complexity. This setup enables analysis of how increasing context affects model performance. We tested both models under four temperature settings (0.01, 0.5, 1.0, 2.0) and evaluated their ability to predict the next token across three reasoning levels. Zero-order reasoning involves tracking the state, either current (ground truth) or past (memory). First-order reasoning concerns understanding another's mental state (e.g., "Does Anne know the apple is salted?"). Second-order reasoning adds recursion (e.g., "Does Anne think that Charles knows the apple is salted?"). Our results show that adding more infill sentences slightly reduces prediction accuracy, as added context increases complexity and ambiguity. Llama-2 consistently outperforms GPT-2 in prediction accuracy, especially at lower temperatures, demonstrating greater confidence in selecting the most probable token. As reasoning complexity rises, model responses diverge more. Notably, GPT-2 and Llama-2 display greater variability in predictions during first- and second-order reasoning tasks. These findings illustrate how model architecture, temperature, and contextual complexity influence next-token prediction, contributing to a better understanding of the strengths and limitations of current language models. [Submitted on 22 Apr 2025]

Dynamic Early Exit in Reasoning Models
Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Zheng Lin, Li Cao, Weiping Wang
Recent advances in large reasoning language models (LRLMs) rely on test-time scaling, which extends long chain-of-thought (CoT) generation to solve complex tasks. However, overthinking in long CoT not only slows down the efficiency of problem solving, but also risks accuracy loss due to the extremely detailed or redundant reasoning steps. We propose a simple yet effective method that allows LLMs to self-truncate CoT sequences by early exit during generation. Instead of relying on fixed heuristics, the proposed method monitors model behavior at potential reasoning transition points (e.g.,"Wait" tokens) and dynamically terminates the next reasoning chain's generation when the model exhibits high confidence in a trial answer. Our method requires no additional training and can be seamlessly integrated into existing o1-like reasoning LLMs. Experiments on multiple reasoning benchmarks MATH-500, AMC 2023, GPQA Diamond and AIME 2024 show that the proposed method is consistently effective on deepseek-series reasoning LLMs, reducing the length of CoT sequences by an average of 31% to 43% while improving accuracy by 1.7% to 5.7%. [Submitted on 22 Apr 2025]

Navigating the State of Cognitive Flow: Context-Aware AI Interventions for Effective Reasoning Support
Dinithi Dissanayake, Suranga Nanayakkara
Flow theory describes an optimal cognitive state where individuals experience deep focus and intrinsic motivation when a task's difficulty aligns with their skill level. In AI-augmented reasoning, interventions that disrupt the state of cognitive flow can hinder rather than enhance decision-making. This paper proposes a context-aware cognitive augmentation framework that adapts interventions based on three key contextual factors: type, timing, and scale. By leveraging multimodal behavioral cues (e.g., gaze behavior, typing hesitation, interaction speed), AI can dynamically adjust cognitive support to maintain or restore flow. We introduce the concept of cognitive flow, an extension of flow theory in AI-augmented reasoning, where interventions are personalized, adaptive, and minimally intrusive. By shifting from static interventions to context-aware augmentation, our approach ensures that AI systems support deep engagement in complex decision-making and reasoning without disrupting cognitive immersion. [Submitted on 22 Apr 2025]

LLMs are Greedy Agents: Effects of RL Fine-tuning on Decision-Making Abilities
Thomas Schmied, Jörg Bornschein, Jordi Grau-Moya, Markus Wulfmeier, Razvan Pascanu
The success of Large Language Models (LLMs) has sparked interest in various agentic applications. A key hypothesis is that LLMs, leveraging common sense and Chain-of-Thought (CoT) reasoning, can effectively explore and efficiently solve complex domains. However, LLM agents have been found to suffer from sub-optimal exploration and the knowing-doing gap, the inability to effectively act on knowledge present in the model. In this work, we systematically study why LLMs perform sub-optimally in decision-making scenarios. In particular, we closely examine three prevalent failure modes: greediness, frequency bias, and the knowing-doing gap. We propose mitigation of these shortcomings by fine-tuning via Reinforcement Learning (RL) on self-generated CoT rationales. Our experiments across multi-armed bandits, contextual bandits, and Tic-tac-toe, demonstrate that RL fine-tuning enhances the decision-making abilities of LLMs by increasing exploration and narrowing the knowing-doing gap. Finally, we study both classic exploration mechanisms, such as $\epsilon$-greedy, and LLM-specific approaches, such as self-correction and self-consistency, to enable more effective fine-tuning of LLMs for decision-making. [Submitted on 22 Apr 2025]

Certifying Knowledge Comprehension in LLMs
Isha Chaudhary, Vedaant V. Jain, Gagandeep Singh
Large Language Models (LLMs) are increasingly deployed in safety-critical systems where they provide answers based on in-context information derived from knowledge bases. As LLMs are increasingly envisioned as superhuman agents, their proficiency in knowledge comprehension-extracting relevant information and reasoning over it to answer questions, a key facet of human intelligence-becomes crucial. However, existing evaluations of LLMs on knowledge comprehension are typically conducted on small test sets, but these datasets represent only a tiny fraction of the vast number of possible queries. Simple empirical evaluations on these limited test sets raises concerns about the reliability and generalizability of the results. In this work, we introduce the first specification and certification framework for knowledge comprehension in LLMs, providing formal probabilistic guarantees for reliability. Instead of a fixed dataset, we design novel specifications that mathematically represent prohibitively large probability distributions of knowledge comprehension prompts with natural noise, using knowledge graphs. From these specifications, we generate quantitative certificates that offer high-confidence, tight bounds on the probability that a given LLM correctly answers any question drawn from the specification distribution. We apply our framework to certify SOTA LLMs in two domains: precision medicine and general question-answering. Our results reveal previously unrecognized vulnerabilities in SOTA LLMs due to natural noise in the prompts. Additionally, we establish performance hierarchies with formal guarantees among the SOTA LLMs, particularly in the context of precision medicine question-answering. [Submitted on 24 Feb 2024 (v1), last revised 21 Apr 2025 (this version, v3)]

Towards Unifying Evaluation of Counterfactual Explanations: Leveraging Large Language Models for Human-Centric Assessments
Marharyta Domnich, Julius Välja, Rasmus Moorits Veski, Giacomo Magnifico, Kadi Tulver, Eduard Barbu, Raul Vicente
As machine learning models evolve, maintaining transparency demands more human-centric explainable AI techniques. Counterfactual explanations, with roots in human reasoning, identify the minimal input changes needed to obtain a given output and, hence, are crucial for supporting decision-making. Despite their importance, the evaluation of these explanations often lacks grounding in user studies and remains fragmented, with existing metrics not fully capturing human perspectives. To address this challenge, we developed a diverse set of 30 counterfactual scenarios and collected ratings across 8 evaluation metrics from 206 respondents. Subsequently, we fine-tuned different Large Language Models (LLMs) to predict average or individual human judgment across these metrics. Our methodology allowed LLMs to achieve an accuracy of up to 63% in zero-shot evaluations and 85% (over a 3-classes prediction) with fine-tuning across all metrics. The fine-tuned models predicting human ratings offer better comparability and scalability in evaluating different counterfactual explanation frameworks. [Submitted on 28 Oct 2024 (v1), last revised 22 Apr 2025 (this version, v3)]

AI Predicts AGI: Leveraging AGI Forecasting and Peer Review to Explore LLMs' Complex Reasoning Capabilities
Fabrizio Davide, Pietro Torre, Leonardo Ercolani, Andrea Gaggioli
We tasked 16 state-of-the-art large language models (LLMs) with estimating the likelihood of Artificial General Intelligence (AGI) emerging by 2030. To assess the quality of these forecasts, we implemented an automated peer review process (LLM-PR). The LLMs' estimates varied widely, ranging from 3% (Reka- Core) to 47.6% (GPT-4o), with a median of 12.5%. These estimates closely align with a recent expert survey that projected a 10% likelihood of AGI by 2027, underscoring the relevance of LLMs in forecasting complex, speculative scenarios. The LLM-PR process demonstrated strong reliability, evidenced by a high Intraclass Correlation Coefficient (ICC = 0.79), reflecting notable consistency in scoring across the models. Among the models, Pplx-70b-online emerged as the top performer, while Gemini-1.5-pro-api ranked the lowest. A cross-comparison with external benchmarks, such as LMSYS Chatbot Arena, revealed that LLM rankings remained consistent across different evaluation methods, suggesting that existing benchmarks may not encapsulate some of the skills relevant for AGI prediction. We further explored the use of weighting schemes based on external benchmarks, optimizing the alignment of LLMs' predictions with human expert forecasts. This analysis led to the development of a new, 'AGI benchmark' designed to highlight performance differences in AGI-related tasks. Our findings offer insights into LLMs' capabilities in speculative, interdisciplinary forecasting tasks and emphasize the growing need for innovative evaluation frameworks for assessing AI performance in complex, uncertain real-world scenarios. [Submitted on 12 Dec 2024 (v1), last revised 22 Apr 2025 (this version, v2)]

Codenames as a Benchmark for Large Language Models
Matthew Stephenson, Matthew Sidji, Benoît Ronval
In this paper, we propose the use of the popular word-based board game Codenames as a suitable benchmark for evaluating the reasoning capabilities of Large Language Models (LLMs). Codenames presents a highly interesting challenge for achieving successful AI performance, requiring both a sophisticated understanding of language, theory of mind, and epistemic reasoning capabilities. Prior attempts to develop agents for Codenames have largely relied on word embedding techniques, which have a limited vocabulary range and perform poorly when paired with differing approaches. LLMs have demonstrated enhanced reasoning and comprehension capabilities for language-based tasks, but can still suffer in lateral thinking challenges. We evaluate the capabilities of several state-of-the-art LLMs, including GPT-4o, Gemini 1.5, Claude 3.5 Sonnet, and Llama 3.1, across a variety of board setups. Our results indicate that while certain LLMs perform better than others overall, different models exhibit varying emergent behaviours during gameplay and excel at specific roles. We also evaluate the performance of different combinations of LLMs when playing cooperatively together, demonstrating that LLM agents are more generalisable to a wider range of teammates than prior techniques. [Submitted on 16 Dec 2024 (v1), last revised 21 Apr 2025 (this version, v2)]

Time's Up! An Empirical Study of LLM Reasoning Ability Under Output Length Constraint
Yi Sun, Han Wang, Jiaqiang Li, Jiacheng Liu, Xiangyu Li, Hao Wen, Huiwen Zheng, Yan Liang, Yuanchun Li, Yunxin Liu
Recent work has demonstrated the remarkable potential of Large Language Models (LLMs) in test-time scaling. By making the models think before answering, they are able to achieve much higher accuracy with extra inference computation. However, in many real-world scenarios, models are used under time constraints, where an answer should be given to the user within a certain output length. It is unclear whether and how the reasoning abilities of LLMs remain effective under such constraints. We take a first look at this problem by conducting an in-depth empirical study. Specifically, we test more than 25 LLMs on common reasoning datasets under a wide range of output length budgets, and we analyze the correlation between the inference accuracy and various properties including model type, model size, prompt style, etc. We also consider the mappings between the token budgets and the actual on-device latency budgets. The results have demonstrated several interesting findings regarding the budget-aware LLM reasoning that differ from the unconstrained situation, e.g. the optimal choices of model sizes and prompts change under different budgets. These findings offer practical guidance for users to deploy LLMs under real-world latency constraints. [Submitted on 19 Apr 2025 (v1), last revised 22 Apr 2025 (this version, v2)]

Synergistic Weak-Strong Collaboration by Aligning Preferences
Yizhu Jiao, Xuchao Zhang, Zhaoyang Wang, Yubo Ma, Zhun Deng, Rujia Wang, Chetan Bansal, Saravan Rajmohan, Jiawei Han, Huaxiu Yao
Current Large Language Models (LLMs) excel in general reasoning yet struggle with specialized tasks requiring proprietary or domain-specific knowledge. Fine-tuning large models for every niche application is often infeasible due to black-box constraints and high computational overhead. To address this, we propose a collaborative framework that pairs a specialized weak model with a general strong model. The weak model, tailored to specific domains, produces initial drafts and background information, while the strong model leverages its advanced reasoning to refine these drafts, extending LLMs' capabilities to critical yet specialized tasks. To optimize this collaboration, we introduce a collaborative feedback to fine-tunes the weak model, which quantifies the influence of the weak model's contributions in the collaboration procedure and establishes preference pairs to guide preference tuning of the weak model. We validate our framework through experiments on three domains. We find that the collaboration significantly outperforms each model alone by leveraging complementary strengths. Moreover, aligning the weak model with the collaborative preference further enhances overall performance. [Submitted on 21 Apr 2025 (v1), last revised 22 Apr 2025 (this version, v2)]

LAMD: Context-driven Android Malware Detection and Classification with LLMs
Xingzhi Qian, Xinran Zheng, Yiling He, Shuo Yang, Lorenzo Cavallaro
The rapid growth of mobile applications has escalated Android malware threats. Although there are numerous detection methods, they often struggle with evolving attacks, dataset biases, and limited explainability. Large Language Models (LLMs) offer a promising alternative with their zero-shot inference and reasoning capabilities. However, applying LLMs to Android malware detection presents two key challenges: (1)the extensive support code in Android applications, often spanning thousands of classes, exceeds LLMs' context limits and obscures malicious behavior within benign functionality; (2)the structural complexity and interdependencies of Android applications surpass LLMs' sequence-based reasoning, fragmenting code analysis and hindering malicious intent inference. To address these challenges, we propose LAMD, a practical context-driven framework to enable LLM-based Android malware detection. LAMD integrates key context extraction to isolate security-critical code regions and construct program structures, then applies tier-wise code reasoning to analyze application behavior progressively, from low-level instructions to high-level semantics, providing final prediction and explanation. A well-designed factual consistency verification mechanism is equipped to mitigate LLM hallucinations from the first tier. Evaluation in real-world settings demonstrates LAMD's effectiveness over conventional detectors, establishing a feasible basis for LLM-driven malware analysis in dynamic threat landscapes. [Submitted on 18 Feb 2025 (v1), last revised 21 Apr 2025 (this version, v2)]

See or Recall: A Sanity Check for the Role of Vision in Solving Visualization Question Answer Tasks with Multimodal LLMs
Zhimin Li, Haichao Miao, Xinyuan Yan, Valerio Pascucci, Matthew Berger, Shusen Liu
Recent developments in multimodal large language models (MLLM) have equipped language models to reason about vision and language jointly. This permits MLLMs to both perceive and answer questions about data visualization across a variety of designs and tasks. Applying MLLMs to a broad range of visualization tasks requires us to properly evaluate their capabilities, and the most common way to conduct evaluation is through measuring a model's visualization reasoning capability, analogous to how we would evaluate human understanding of visualizations (e.g., visualization literacy). However, we found that in the context of visualization question answering (VisQA), how an MLLM perceives and reasons about visualizations can be fundamentally different from how humans approach the same problem. During the evaluation, even without visualization, the model could correctly answer a substantial portion of the visualization test questions, regardless of whether any selection options were provided. We hypothesize that the vast amount of knowledge encoded in the language model permits factual recall that supersedes the need to seek information from the visual signal. It raises concerns that the current VisQA evaluation may not fully capture the models' visualization reasoning capabilities. To address this, we propose a comprehensive sanity check framework that integrates a rule-based decision tree and a sanity check table to disentangle the effects of "seeing" (visual processing) and "recall" (reliance on prior knowledge). This validates VisQA datasets for evaluation, highlighting where models are truly "seeing", positively or negatively affected by the factual recall, or relying on inductive biases for question answering. Our study underscores the need for careful consideration in designing future visualization understanding studies when utilizing MLLMs. [Submitted on 14 Apr 2025 (v1), last revised 21 Apr 2025 (this version, v2)]

LOKA Protocol: A Decentralized Framework for Trustworthy and Ethical AI Agent Ecosystems
Rajesh Ranjan, Shailja Gupta, Surya Narayan Singh
The rise of autonomous AI agents, capable of perceiving, reasoning, and acting independently, signals a profound shift in how digital ecosystems operate, govern, and evolve. As these agents proliferate beyond centralized infrastructures, they expose foundational gaps in identity, accountability, and ethical alignment. Three critical questions emerge: Identity: Who or what is the agent? Accountability: Can its actions be verified, audited, and trusted? Ethical Consensus: Can autonomous systems reliably align with human values and prevent harmful emergent behaviors? We present the novel LOKA Protocol (Layered Orchestration for Knowledgeful Agents), a unified, systems-level architecture for building ethically governed, interoperable AI agent ecosystems. LOKA introduces a proposed Universal Agent Identity Layer (UAIL) for decentralized, verifiable identity; intent-centric communication protocols for semantic coordination across diverse agents; and a Decentralized Ethical Consensus Protocol (DECP) that could enable agents to make context-aware decisions grounded in shared ethical baselines. Anchored in emerging standards such as Decentralized Identifiers (DIDs), Verifiable Credentials (VCs), and post-quantum cryptography, LOKA proposes a scalable, future-resilient blueprint for multi-agent AI governance. By embedding identity, trust, and ethics into the protocol layer itself, LOKA proposes the foundation for a new era of responsible, transparent, and autonomous AI ecosystems operating across digital and physical domains. [Submitted on 15 Apr 2025 (v1), last revised 22 Apr 2025 (this version, v2)]

EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Guanrou Yang, Chen Yang, Qian Chen, Ziyang Ma, Wenxi Chen, Wen Wang, Tianrui Wang, Yifan Yang, Zhikang Niu, Wenrui Liu, Fan Yu, Zhihao Du, Zhifu Gao, ShiLiang Zhang, Xie Chen
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at this https URL. Dataset, code, and checkpoints will be released. [Submitted on 17 Apr 2025 (v1), last revised 22 Apr 2025 (this version, v3)]

Learning to Reason under Off-Policy Guidance
Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, Yue Zhang
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning (RL) with simple rule-based rewards. However, existing zero-RL approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY guidance), a framework that augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Notably, we propose policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an over +7.0 average gain across six math benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It also substantially surpasses imitation-based supervised fine-tuning (SFT), particularly in generalization. Analysis shows LUFFY not only imitates effectively but also explores beyond demonstrations, offering a scalable path to train generalizable reasoning models with off-policy guidance. [Submitted on 21 Apr 2025 (v1), last revised 22 Apr 2025 (this version, v2)]

NLG
Multimodal
AGI Is Coming... Right After AI Learns to Play Wordle
Sarath Shekkizhar, Romain Cosentino
This paper investigates multimodal agents, in particular, OpenAI's Computer-User Agent (CUA), trained to control and complete tasks through a standard computer interface, similar to humans. We evaluated the agent's performance on the New York Times Wordle game to elicit model behaviors and identify shortcomings. Our findings revealed a significant discrepancy in the model's ability to recognize colors correctly depending on the context. The model had a $5.36\%$ success rate over several hundred runs across a week of Wordle. Despite the immense enthusiasm surrounding AI agents and their potential to usher in Artificial General Intelligence (AGI), our findings reinforce the fact that even simple tasks present substantial challenges for today's frontier AI models. We conclude with a discussion of the potential underlying causes, implications for future development, and research directions to improve these AI systems. [Submitted on 21 Apr 2025]

TrustGeoGen: Scalable and Formal-Verified Data Engine for Trustworthy Multi-modal Geometric Problem Solving
Daocheng Fu, Zijun Chen, Renqiu Xia, Qi Liu, Yuan Feng, Hongbin Zhou, Renrui Zhang, Shiyang Feng, Peng Gao, Junchi Yan, Botian Shi, Bo Zhang, Yu Qiao
Mathematical geometric problem solving (GPS) often requires effective integration of multimodal information and verifiable logical coherence. Despite the fast development of large language models in general problem solving, it remains unresolved regarding with both methodology and benchmarks, especially given the fact that exiting synthetic GPS benchmarks are often not self-verified and contain noise and self-contradicted information due to the illusion of LLMs. In this paper, we propose a scalable data engine called TrustGeoGen for problem generation, with formal verification to provide a principled benchmark, which we believe lays the foundation for the further development of methods for GPS. The engine synthesizes geometric data through four key innovations: 1) multimodal-aligned generation of diagrams, textual descriptions, and stepwise solutions; 2) formal verification ensuring rule-compliant reasoning paths; 3) a bootstrapping mechanism enabling complexity escalation via recursive state generation and 4) our devised GeoExplore series algorithms simultaneously produce multi-solution variants and self-reflective backtracking traces. By formal logical verification, TrustGeoGen produces GeoTrust-200K dataset with guaranteed modality integrity, along with GeoTrust-test testset. Experiments reveal the state-of-the-art models achieve only 49.17\% accuracy on GeoTrust-test, demonstrating its evaluation stringency. Crucially, models trained on GeoTrust achieve OOD generalization on GeoQA, significantly reducing logical inconsistencies relative to pseudo-label annotated by OpenAI-o1. Our code is available at this https URL [Submitted on 22 Apr 2025]

RINN: One Sample Radio Frequency Imaging based on Physics Informed Neural Network
Fei Shang, Haohua Du, Dawei Yan, Panlong Yang, Xiang-Yang Li
Due to its ability to work in non-line-of-sight and low-light environments, radio frequency (RF) imaging technology is expected to bring new possibilities for embodied intelligence and multimodal sensing. However, widely used RF devices (such as Wi-Fi) often struggle to provide high-precision electromagnetic measurements and large-scale datasets, hindering the application of RF imaging technology. In this paper, we combine the ideas of PINN to design the RINN network, using physical constraints instead of true value comparison constraints and adapting it with the characteristics of ubiquitous RF signals, allowing the RINN network to achieve RF imaging using only one sample without phase and with amplitude noise. Our numerical evaluation results show that compared with 5 classic algorithms based on phase data for imaging results, RINN's imaging results based on phaseless data are good, with indicators such as RRMSE (0.11) performing similarly well. RINN provides new possibilities for the universal development of radio frequency imaging technology. [Submitted on 19 Apr 2025]

Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models
Saban Ozturk, Melih B. Yilmaz, Muti Kara, M. Talat Yavuz, Aykut Koç, Tolga Çukur
Diagnostic imaging relies on interpreting both images and radiology reports, but the growing data volumes place significant pressure on medical experts, yielding increased errors and workflow backlogs. Medical vision-language models (med-VLMs) have emerged as a powerful framework to efficiently process multimodal imaging data, particularly in chest X-ray (CXR) evaluations, albeit their performance hinges on how well image and text representations are aligned. Existing alignment methods, predominantly based on contrastive learning, prioritize separation between disease classes over segregation of fine-grained pathology attributes like location, size or severity, leading to suboptimal representations. Here, we propose MedTrim (Meta-entity-driven Triplet mining), a novel method that enhances image-text alignment through multimodal triplet learning synergistically guided by disease class as well as adjectival and directional pathology descriptors. Unlike common alignment methods that separate broad disease classes, MedTrim leverages structured meta-entity information to preserve subtle but clinically significant intra-class variations. For this purpose, we first introduce an ontology-based entity recognition module that extracts pathology-specific meta-entities from CXR reports, as annotations on pathology attributes are rare in public datasets. For refined sample selection in triplet mining, we then introduce a novel score function that captures an aggregate measure of inter-sample similarity based on disease classes and adjectival/directional descriptors. Lastly, we introduce a multimodal triplet alignment objective for explicit within- and cross-modal alignment between samples sharing detailed pathology characteristics. Our demonstrations indicate that MedTrim improves performance in downstream retrieval and classification tasks compared to state-of-the-art alignment methods. [Submitted on 22 Apr 2025]

Navigating the State of Cognitive Flow: Context-Aware AI Interventions for Effective Reasoning Support
Dinithi Dissanayake, Suranga Nanayakkara
Flow theory describes an optimal cognitive state where individuals experience deep focus and intrinsic motivation when a task's difficulty aligns with their skill level. In AI-augmented reasoning, interventions that disrupt the state of cognitive flow can hinder rather than enhance decision-making. This paper proposes a context-aware cognitive augmentation framework that adapts interventions based on three key contextual factors: type, timing, and scale. By leveraging multimodal behavioral cues (e.g., gaze behavior, typing hesitation, interaction speed), AI can dynamically adjust cognitive support to maintain or restore flow. We introduce the concept of cognitive flow, an extension of flow theory in AI-augmented reasoning, where interventions are personalized, adaptive, and minimally intrusive. By shifting from static interventions to context-aware augmentation, our approach ensures that AI systems support deep engagement in complex decision-making and reasoning without disrupting cognitive immersion. [Submitted on 22 Apr 2025]

Multimodal Laryngoscopic Video Analysis for Assisted Diagnosis of Vocal Fold Paralysis
Yucong Zhang, Xin Zou, Jinshan Yang, Wenjun Chen, Juan Liu, Faya Liang, Ming Li
This paper presents the Multimodal Laryngoscopic Video Analyzing System (MLVAS), a novel system that leverages both audio and video data to automatically extract key video segments and metrics from raw laryngeal videostroboscopic videos for assisted clinical assessment. The system integrates video-based glottis detection with an audio keyword spotting method to analyze both video and audio data, identifying patient vocalizations and refining video highlights to ensure optimal inspection of vocal fold movements. Beyond key video segment extraction from the raw laryngeal videos, MLVAS is able to generate effective audio and visual features for Vocal Fold Paralysis (VFP) detection. Pre-trained audio encoders are utilized to encode the patient voice to get the audio features. Visual features are generated by measuring the angle deviation of both the left and right vocal folds to the estimated glottal midline on the segmented glottis masks. To get better masks, we introduce a diffusion-based refinement that follows traditional U-Net segmentation to reduce false positives. We conducted several ablation studies to demonstrate the effectiveness of each module and modalities in the proposed MLVAS. The experimental results on a public segmentation dataset show the effectiveness of our proposed segmentation module. In addition, unilateral VFP classification results on a real-world clinic dataset demonstrate MLVAS's ability of providing reliable and objective metrics as well as visualization for assisted clinical diagnosis. [Submitted on 5 Sep 2024 (v1), last revised 22 Apr 2025 (this version, v3)]

ThermalGaussian: Thermal 3D Gaussian Splatting
Rongfeng Lu, Hangyu Chen, Zunjie Zhu, Yuhang Qin, Ming Lu, Le Zhang, Chenggang Yan, Anke Xue
Thermography is especially valuable for the military and other users of surveillance cameras. Some recent methods based on Neural Radiance Fields (NeRF) are proposed to reconstruct the thermal scenes in 3D from a set of thermal and RGB images. However, unlike NeRF, 3D Gaussian splatting (3DGS) prevails due to its rapid training and real-time rendering. In this work, we propose ThermalGaussian, the first thermal 3DGS approach capable of rendering high-quality images in RGB and thermal modalities. We first calibrate the RGB camera and the thermal camera to ensure that both modalities are accurately aligned. Subsequently, we use the registered images to learn the multimodal 3D Gaussians. To prevent the overfitting of any single modality, we introduce several multimodal regularization constraints. We also develop smoothing constraints tailored to the physical characteristics of the thermal modality. Besides, we contribute a real-world dataset named RGBT-Scenes, captured by a hand-hold thermal-infrared camera, facilitating future research on thermal scene reconstruction. We conduct comprehensive experiments to show that ThermalGaussian achieves photorealistic rendering of thermal images and improves the rendering quality of RGB images. With the proposed multimodal regularization constraints, we also reduced the model's storage cost by 90%. Our project page is at this https URL. [Submitted on 11 Sep 2024 (v1), last revised 22 Apr 2025 (this version, v2)]

SCMPPI: Supervised Contrastive Multimodal Framework for Predicting Protein-Protein Interactions
Shengrui XU, Tianchi Lu, Zikun Wang, Jixiu Zhai, Jingwan Wang
Protein-protein interaction (PPI) prediction plays a pivotal role in deciphering cellular functions and disease mechanisms. To address the limitations of traditional experimental methods and existing computational approaches in cross-modal feature fusion and false-negative suppression, we propose SCMPPI-a novel supervised contrastive multimodal framework. By effectively integrating sequence-based features (AAC, DPC, ESMC-CKSAAP) with network topology (Node2Vec embeddings) and incorporating an enhanced contrastive learning strategy with negative sample filtering, SCMPPI achieves superior prediction performance. Extensive experiments on eight benchmark datasets demonstrate its state-of-the-art accuracy(98.13%) and AUC(99.69%), along with excellent cross-species generalization (AUC>99%). Successful applications in CD9 networks, Wnt pathway analysis, and cancer-specific networks further highlight its potential for disease target discovery, establishing SCMPPI as a powerful tool for multimodal biological data analysis. [Submitted on 3 Apr 2025 (v1), last revised 22 Apr 2025 (this version, v2)]

See or Recall: A Sanity Check for the Role of Vision in Solving Visualization Question Answer Tasks with Multimodal LLMs
Zhimin Li, Haichao Miao, Xinyuan Yan, Valerio Pascucci, Matthew Berger, Shusen Liu
Recent developments in multimodal large language models (MLLM) have equipped language models to reason about vision and language jointly. This permits MLLMs to both perceive and answer questions about data visualization across a variety of designs and tasks. Applying MLLMs to a broad range of visualization tasks requires us to properly evaluate their capabilities, and the most common way to conduct evaluation is through measuring a model's visualization reasoning capability, analogous to how we would evaluate human understanding of visualizations (e.g., visualization literacy). However, we found that in the context of visualization question answering (VisQA), how an MLLM perceives and reasons about visualizations can be fundamentally different from how humans approach the same problem. During the evaluation, even without visualization, the model could correctly answer a substantial portion of the visualization test questions, regardless of whether any selection options were provided. We hypothesize that the vast amount of knowledge encoded in the language model permits factual recall that supersedes the need to seek information from the visual signal. It raises concerns that the current VisQA evaluation may not fully capture the models' visualization reasoning capabilities. To address this, we propose a comprehensive sanity check framework that integrates a rule-based decision tree and a sanity check table to disentangle the effects of "seeing" (visual processing) and "recall" (reliance on prior knowledge). This validates VisQA datasets for evaluation, highlighting where models are truly "seeing", positively or negatively affected by the factual recall, or relying on inductive biases for question answering. Our study underscores the need for careful consideration in designing future visualization understanding studies when utilizing MLLMs. [Submitted on 14 Apr 2025 (v1), last revised 21 Apr 2025 (this version, v2)]

EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Guanrou Yang, Chen Yang, Qian Chen, Ziyang Ma, Wenxi Chen, Wen Wang, Tianrui Wang, Yifan Yang, Zhikang Niu, Wenrui Liu, Fan Yu, Zhihao Du, Zhifu Gao, ShiLiang Zhang, Xie Chen
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at this https URL. Dataset, code, and checkpoints will be released. [Submitted on 17 Apr 2025 (v1), last revised 22 Apr 2025 (this version, v3)]

Expanding the Generative AI Design Space through Structured Prompting and Multimodal Interfaces
Nimisha Karnatak, Adrien Baranes, Rob Marchant, Huinan Zeng, Tríona Butler, Kristen Olson
Text-based prompting remains the predominant interaction paradigm in generative AI, yet it often introduces friction for novice users such as small business owners (SBOs), who struggle to articulate creative goals in domain-specific contexts like advertising. Through a formative study with six SBOs in the United Kingdom, we identify three key challenges: difficulties in expressing brand intuition through prompts, limited opportunities for fine-grained adjustment and refinement during and after content generation, and the frequent production of generic content that lacks brand specificity. In response, we present ACAI (AI Co-Creation for Advertising and Inspiration), a multimodal generative AI tool designed to support novice designers by moving beyond traditional prompt interfaces. ACAI features a structured input system composed of three panels: Branding, Audience and Goals, and the Inspiration Board. These inputs allow users to convey brand-relevant context and visual preferences. This work contributes to HCI research on generative systems by showing how structured interfaces can foreground user-defined context, improve alignment, and enhance co-creative control in novice creative workflows. [Submitted on 19 Apr 2025 (v1), last revised 22 Apr 2025 (this version, v2)]

2025-04-22
Creative
Using Generative AI Personas Increases Collective Diversity in Human Ideation
Yun Wan, Yoram M Kalman
This study challenges the widely-reported tradeoff between generative AI's (GenAI) contribution to creative outcomes and decreased diversity of these outcomes. We modified the design of such a study, by Doshi and Hauser (2024), in which participants wrote short stories either aided or unaided by GenAI plot ideas[1]. In the modified study, plot ideas were generated through ten unique GenAI "personas" with diverse traits (e.g. cultural backgrounds, thinking styles, genre preferences), creating a pool of 300 story plots. While plot ideas from any individual persona showed high similarity (average cosine similarity of 0.92), ideas across different personas exhibited substantial variation (average similarity of 0.20). When human participants wrote stories based on these diverse plot ideas, their collective outputs maintained the same level of diversity as stories written without GenAI assistance, effectively eliminating the diversity reduction observed in [1]. Traditional text analytics further revealed that GenAI-assisted stories featured greater diversity in descriptive and emotional language compared to purely human-generated stories without GenAI assistance. Our findings demonstrate that introducing diversity at the AI input stage through distinct personas can preserve and potentially enhance the collective diversity of human creative outputs when collaborating with GenAI. [Submitted on 29 Mar 2025]

Mixer Metaphors: audio interfaces for non-musical applications
Tace McNamara, Jon McCormack, Maria Teresa Llano
The NIME conference traditionally focuses on interfaces for music and musical expression. In this paper we reverse this tradition to ask, can interfaces developed for music be successfully appropriated to non-musical applications? To help answer this question we designed and developed a new device, which uses interface metaphors borrowed from analogue synthesisers and audio mixing to physically control the intangible aspects of a Large Language Model. We compared two versions of the device, with and without the audio-inspired augmentations, with a group of artists who used each version over a one week period. Our results show that the use of audio-like controls afforded more immediate, direct and embodied control over the LLM, allowing users to creatively experiment and play with the device over its non-mixer counterpart. Our project demonstrates how cross-sensory metaphors can support creative thinking and embodied practice when designing new technological interfaces. [Submitted on 16 Apr 2025]

AI Safety Should Prioritize the Future of Work
Sanchaita Hazra, Bodhisattwa Prasad Majumder, Tuhin Chakrabarty
Current efforts in AI safety prioritize filtering harmful content, preventing manipulation of human behavior, and eliminating existential risks in cybersecurity or biosecurity. While pressing, this narrow focus overlooks critical human-centric considerations that shape the long-term trajectory of a society. In this position paper, we identify the risks of overlooking the impact of AI on the future of work and recommend comprehensive transition support towards the evolution of meaningful labor with human agency. Through the lens of economic theories, we highlight the intertemporal impacts of AI on human livelihood and the structural changes in labor markets that exacerbate income inequality. Additionally, the closed-source approach of major stakeholders in AI development resembles rent-seeking behavior through exploiting resources, breeding mediocrity in creative labor, and monopolizing innovation. To address this, we argue in favor of a robust international copyright anatomy supported by implementing collective licensing that ensures fair compensation mechanisms for using data to train AI models. We strongly recommend a pro-worker framework of global AI governance to enhance shared prosperity and economic justice while reducing technical debt. [Submitted on 16 Apr 2025]

Evaluating Human-AI Interaction via Usability, User Experience and Acceptance Measures for MMM-C: A Creative AI System for Music Composition
Renaud Bougueng Tchemeube, Jeff Ens, Cale Plut, Philippe Pasquier, Maryam Safi, Yvan Grabit, Jean-Baptiste Rolland
With the rise of artificial intelligence (AI), there has been increasing interest in human-AI co-creation in a variety of artistic domains including music as AI-driven systems are frequently able to generate human-competitive artifacts. Now, the implications of such systems for musical practice are being investigated. We report on a thorough evaluation of the user adoption of the Multi-Track Music Machine (MMM) as a co-creative AI tool for music composers. To do this, we integrate MMM into Cubase, a popular Digital Audio Workstation (DAW) by Steinberg, by producing a "1-parameter" plugin interface named MMM-Cubase (MMM-C), which enables human-AI co-composition. We contribute a methodological assemblage as a 3-part mixed method study measuring usability, user experience and technology acceptance of the system across two groups of expert-level composers: hobbyists and professionals. Results show positive usability and acceptance scores. Users report experiences of novelty, surprise and ease of use from using the system, and limitations on controllability and predictability of the interface when generating music. Findings indicate no significant difference between the two user groups. [Submitted on 18 Apr 2025]

ParaPO: Aligning Language Models to Reduce Verbatim Reproduction of Pre-training Data
Tong Chen, Faeze Brahman, Jiacheng Liu, Niloofar Mireshghallah, Weijia Shi, Pang Wei Koh, Luke Zettlemoyer, Hannaneh Hajishirzi
Language models (LMs) can memorize and reproduce segments from their pretraining data verbatim even in non-adversarial settings, raising concerns about copyright, plagiarism, privacy, and creativity. We introduce Paraphrase Preference Optimization (ParaPO), a post-training method that fine-tunes LMs to reduce unintentional regurgitation while preserving their overall utility. ParaPO trains LMs to prefer paraphrased versions of memorized segments over the original verbatim content from the pretraining data. To maintain the ability to recall famous quotations when appropriate, we develop a variant of ParaPO that uses system prompts to control regurgitation behavior. In our evaluation on Llama3.1-8B, ParaPO consistently reduces regurgitation across all tested datasets (e.g., reducing the regurgitation metric from 17.3 to 12.9 in creative writing), whereas unlearning methods used in prior work to mitigate regurgitation are less effective outside their targeted unlearned domain (from 17.3 to 16.9). When applied to the instruction-tuned Tulu3-8B model, ParaPO with system prompting successfully preserves famous quotation recall while reducing unintentional regurgitation (from 8.7 to 6.3 in creative writing) when prompted not to regurgitate. In contrast, without ParaPO tuning, prompting the model not to regurgitate produces only a marginal reduction (8.7 to 8.4). [Submitted on 20 Apr 2025]

Exploring Collaborative GenAI Agents in Synchronous Group Settings: Eliciting Team Perceptions and Design Considerations for the Future of Work
Janet G. Johnson, Macarena Peralta, Mansanjam Kaur, Ruijie Sophia Huang, Sheng Zhao, Ruijia Guan, Shwetha Rajaram, Michael Nebeling
While generative artificial intelligence (GenAI) is finding increased adoption in workplaces, current tools are primarily designed for individual use. Prior work established the potential for these tools to enhance personal creativity and productivity towards shared goals; however, we don't know yet how to best take into account the nuances of group work and team dynamics when deploying GenAI in work settings. In this paper, we investigate the potential of collaborative GenAI agents to augment teamwork in synchronous group settings through an exploratory study that engaged 25 professionals across 6 teams in speculative design workshops and individual follow-up interviews. Our workshops included a mixed reality provotype to simulate embodied collaborative GenAI agents capable of actively participating in group discussions. Our findings suggest that, if designed well, collaborative GenAI agents offer valuable opportunities to enhance team problem-solving by challenging groupthink, bridging communication gaps, and reducing social friction. However, teams' willingness to integrate GenAI agents depended on its perceived fit across a number of individual, team, and organizational factors. We outline the key design tensions around agent representation, social prominence, and engagement and highlight the opportunities spatial and immersive technologies could offer to modulate GenAI influence on team outcomes and strike a balance between augmentation and agency. [Submitted on 21 Apr 2025]

Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction
Vaishnavh Nagarajan, Chen Henry Wu, Charles Ding, Aditi Raghunathan
We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic and memorizes excessively; comparatively, multi-token approaches, namely teacherless training and diffusion models, excel in producing diverse and original output. Secondly, in our tasks, we find that to elicit randomness from the Transformer without hurting coherence, it is better to inject noise right at the input layer (via a method we dub hash-conditioning) rather than defer to temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and softmax-based sampling. We make part of the code available under this https URL [Submitted on 21 Apr 2025]

The Design Space of Recent AI-assisted Research Tools for Ideation, Sensemaking, and Scientific Creativity
Runlong Ye, Matthew Varona, Oliver Huang, Patrick Yung Kang Lee, Michael Liut, Carolina Nobre (University of Toronto)
Generative AI (GenAI) tools are radically expanding the scope and capability of automation in knowledge work such as academic research. While promising for augmenting cognition and streamlining processes, AI-assisted research tools may also increase automation bias and hinder critical thinking. To examine recent developments, we surveyed publications from leading HCI venues over the past three years, closely analyzing thirteen tools to better understand the novel capabilities of these AI-assisted systems and the design spaces they enable: seven employing traditional AI or customized transformer-based approaches, and six integrating open-access large language models (LLMs). Our analysis characterizes the emerging design space, distinguishes between tools focused on workflow mimicry versus generative exploration, and yields four critical design recommendations to guide the development of future systems that foster meaningful cognitive engagement: providing user agency and control, differentiating divergent/convergent thinking support, ensuring adaptability, and prioritizing transparency/accuracy. This work discusses how these insights signal a shift from mere workflow replication towards generative co-creation, presenting new opportunities for the community to craft intuitive, AI-driven research interfaces and interactions. [Submitted on 22 Feb 2025 (v1), last revised 19 Apr 2025 (this version, v2)]

A Survey on Music Generation from Single-Modal, Cross-Modal, and Multi-Modal Perspectives
Shuyu Li, Shulei Ji, Zihao Wang, Songruoyao Wu, Jiaxing Yu, Kejun Zhang
Multi-modal music generation, using multiple modalities like text, images, and video alongside musical scores and audio as guidance, is an emerging research area with broad applications. This paper reviews this field, categorizing music generation systems from the perspective of modalities. The review covers modality representation, multi-modal data alignment, and their utilization to guide music generation. Current datasets and evaluation methods are also discussed. Key challenges in this area include effective multi-modal integration, large-scale comprehensive datasets, and systematic evaluation methods. Finally, an outlook on future research directions is provided, focusing on creativity, efficiency, multi-modal alignment, and evaluation. [Submitted on 1 Apr 2025 (v1), last revised 20 Apr 2025 (this version, v2)]

AI-Slop to AI-Polish? Aligning Language Models through Edit-Based Writing Rewards and Test-time Computation
Tuhin Chakrabarty, Philippe Laban, Chien-Sheng Wu
AI-generated text is proliferating across domains, from creative writing and journalism to marketing content and scientific articles. Models can follow user-provided instructions to generate coherent and grammatically correct outputs but in this work, we study a more fundamental question: how do we evaluate and improve the writing quality of AI-generated text? Writing quality assessment has received less attention from the community, in part because it is fundamentally subjective and requires expertise. We first introduce the Writing Quality Benchmark (WQ) by consolidating five writing-preference datasets into 4,729 writing quality judgments. Our experiments show that most of the competitive baselines, including state-of-the-art LLMs that excel at reasoning tasks, barely outperform random baselines on WQ. We then train specialized Writing Quality Reward Models (WQRM) of various sizes for writing quality assessment that demonstrate strong generalization on four out-of-distribution test sets and 74% accuracy on the WQ benchmark. To further show WQRM's practical benefits during inference, we leverage additional test-time compute to generate and rank multiple candidate revisions, allowing us to select higher-quality outputs from an initial draft. Human evaluation with 9 experienced writers confirm that WQRM-based selection produces writing samples preferred by experts 66% overall, and 72.2% when the reward gap is larger than 1 point. We release our datasets and models to encourage community engagement with writing quality assessment and development of AI writing systems better aligned with human preferences. [Submitted on 10 Apr 2025 (v1), last revised 20 Apr 2025 (this version, v2)]

Reasoning
The Model Counting Competitions 2021-2023
Johannes K. Fichte, Markus Hecher
Modern society is full of computational challenges that rely on probabilistic reasoning, statistics, and combinatorics. Interestingly, many of these questions can be formulated by encoding them into propositional formulas and then asking for its number of models. With a growing interest in practical problem-solving for tasks that involve model counting, the community established the Model Counting (MC) Competition in fall of 2019 with its first iteration in 2020. The competition aims at advancing applications, identifying challenging benchmarks, fostering new solver development, and enhancing existing solvers for model counting problems and their variants. The first iteration, brought together various researchers, identified challenges, and inspired numerous new applications. In this paper, we present a comprehensive overview of the 2021-2023 iterations of the Model Counting Competition. We detail its execution and outcomes. The competition comprised four tracks, each focusing on a different variant of the model counting problem. The first track centered on the model counting problem (MC), which seeks the count of models for a given propositional formula. The second track challenged developers to submit programs capable of solving the weighted model counting problem (WMC). The third track was dedicated to projected model counting (PMC). Finally, we initiated a track that combined projected and weighted model counting (PWMC). The competition continued with a high level of participation, with seven to nine solvers submitted in various different version and based on quite diverging techniques. [Submitted on 31 Jan 2025]

Going Whole Hog: A Philosophical Defense of AI Cognition
Herman Cappelen, Josh Dever
This work defends the 'Whole Hog Thesis': sophisticated Large Language Models (LLMs) like ChatGPT are full-blown linguistic and cognitive agents, possessing understanding, beliefs, desires, knowledge, and intentions. We argue against prevailing methodologies in AI philosophy, rejecting starting points based on low-level computational details ('Just an X' fallacy) or pre-existing theories of mind. Instead, we advocate starting with simple, high-level observations of LLM behavior (e.g., answering questions, making suggestions) -- defending this data against charges of metaphor, loose talk, or pretense. From these observations, we employ 'Holistic Network Assumptions' -- plausible connections between mental capacities (e.g., answering implies knowledge, knowledge implies belief, action implies intention) -- to argue for the full suite of cognitive states. We systematically rebut objections based on LLM failures (hallucinations, planning/reasoning errors), arguing these don't preclude agency, often mirroring human fallibility. We address numerous 'Games of Lacks', arguing that LLMs do not lack purported necessary conditions for cognition (e.g., semantic grounding, embodiment, justification, intrinsic intentionality) or that these conditions are not truly necessary, often relying on anti-discriminatory arguments comparing LLMs to diverse human capacities. Our approach is evidential, not functionalist, and deliberately excludes consciousness. We conclude by speculating on the possibility of LLMs possessing 'alien' contents beyond human conceptual schemes. [Submitted on 18 Apr 2025]

Multi-Stage Retrieval for Operational Technology Cybersecurity Compliance Using Large Language Models: A Railway Casestudy
Regan Bolton, Mohammadreza Sheikhfathollahi, Simon Parkinson, Dan Basher, Howard Parkinson
Operational Technology Cybersecurity (OTCS) continues to be a dominant challenge for critical infrastructure such as railways. As these systems become increasingly vulnerable to malicious attacks due to digitalization, effective documentation and compliance processes are essential to protect these safety-critical systems. This paper proposes a novel system that leverages Large Language Models (LLMs) and multi-stage retrieval to enhance the compliance verification process against standards like IEC 62443 and the rail-specific IEC 63452. We first evaluate a Baseline Compliance Architecture (BCA) for answering OTCS compliance queries, then develop an extended approach called Parallel Compliance Architecture (PCA) that incorporates additional context from regulatory standards. Through empirical evaluation comparing OpenAI-gpt-4o and Claude-3.5-haiku models in these architectures, we demonstrate that the PCA significantly improves both correctness and reasoning quality in compliance verification. Our research establishes metrics for response correctness, logical reasoning, and hallucination detection, highlighting the strengths and limitations of using LLMs for compliance verification in railway cybersecurity. The results suggest that retrieval-augmented approaches can significantly improve the efficiency and accuracy of compliance assessments, particularly valuable in an industry facing a shortage of cybersecurity expertise. [Submitted on 18 Apr 2025]

Think Deep, Think Fast: Investigating Efficiency of Verifier-free Inference-time-scaling Methods
Junlin Wang, Shang Zhu, Jon Saad-Falcon, Ben Athiwaratkun, Qingyang Wu, Jue Wang, Shuaiwen Leon Song, Ce Zhang, Bhuwan Dhingra, James Zou
There is intense interest in investigating how inference time compute (ITC) (e.g. repeated sampling, refinements, etc) can improve large language model (LLM) capabilities. At the same time, recent breakthroughs in reasoning models, such as Deepseek-R1, unlock the opportunity for reinforcement learning to improve LLM reasoning skills. An in-depth understanding of how ITC interacts with reasoning across different models could provide important guidance on how to further advance the LLM frontier. This work conducts a comprehensive analysis of inference-time scaling methods for both reasoning and non-reasoning models on challenging reasoning tasks. Specifically, we focus our research on verifier-free inference time-scaling methods due to its generalizability without needing a reward model. We construct the Pareto frontier of quality and efficiency. We find that non-reasoning models, even with an extremely high inference budget, still fall substantially behind reasoning models. For reasoning models, majority voting proves to be a robust inference strategy, generally competitive or outperforming other more sophisticated ITC methods like best-of-N and sequential revisions, while the additional inference compute offers minimal improvements. We further perform in-depth analyses of the association of key response features (length and linguistic markers) with response quality, with which we can improve the existing ITC methods. We find that correct responses from reasoning models are typically shorter and have fewer hedging and thinking markers (but more discourse markers) than the incorrect responses. [Submitted on 18 Apr 2025]

CODECRASH: Stress Testing LLM Reasoning under Structural and Semantic Perturbations
Man Ho Lam, Chaozheng Wang, Jen-tse Huang, Michael R. Lyu
Large Language Models (LLMs) have recently showcased strong capabilities in code-related tasks, yet their robustness in code comprehension and reasoning remains underexplored. In this paper, we present CodeCrash, a unified benchmark that evaluates LLM robustness under code structural and textual distraction perturbations, applied to two established benchmarks -- CRUXEval and LiveCodeBench -- across both input and output prediction tasks. We evaluate seventeen LLMs using direct and Chain-of-Thought inference to systematically analyze their robustness, identify primary reasons for performance degradation, and highlight failure modes. Our findings reveal the fragility of LLMs under structural noise and the inherent reliance on natural language cues, highlighting critical robustness issues of LLMs in code execution and understanding. Additionally, we examine three Large Reasoning Models (LRMs) and discover the severe vulnerability of self-reflective reasoning mechanisms that lead to reasoning collapse. CodeCrash provides a principled framework for stress-testing LLMs in code understanding, offering actionable directions for future evaluation and benchmarking. The code of CodeCrash and the robustness leaderboard are publicly available at this https URL . [Submitted on 19 Apr 2025]

InfiGUI-R1: Advancing Multimodal GUI Agents from Reactive Actors to Deliberative Reasoners
Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang, Fei Wu
Multimodal Large Language Models (MLLMs) have powered Graphical User Interface (GUI) Agents, showing promise in automating tasks on computing devices. Recent works have begun exploring reasoning in GUI tasks with encouraging results. However, many current approaches rely on manually designed reasoning templates, which may result in reasoning that is not sufficiently robust and adaptive for complex GUI environments. Meanwhile, some existing agents continue to operate as Reactive Actors, relying primarily on implicit reasoning that may lack sufficient depth for GUI tasks demanding planning and error recovery. We argue that advancing these agents requires a shift from reactive acting towards acting based on deliberate reasoning. To facilitate this transformation, we introduce InfiGUI-R1, an MLLM-based GUI agent developed through our Actor2Reasoner framework, a reasoning-centric, two-stage training approach designed to progressively evolve agents from Reactive Actors to Deliberative Reasoners. The first stage, Reasoning Injection, focuses on establishing a basic reasoner. We employ Spatial Reasoning Distillation to transfer cross-modal spatial reasoning capabilities from teacher models to MLLMs through trajectories with explicit reasoning steps, enabling models to integrate GUI visual-spatial information with logical reasoning before action generation. The second stage, Deliberation Enhancement, refines the basic reasoner into a deliberative one using Reinforcement Learning. This stage introduces two approaches: Sub-goal Guidance, which rewards models for generating accurate intermediate sub-goals, and Error Recovery Scenario Construction, which creates failure-and-recovery training scenarios from identified prone-to-error steps. Experimental results show InfiGUI-R1 achieves strong performance in GUI grounding and trajectory tasks. Resources at this https URL. [Submitted on 19 Apr 2025]

CHAINSFORMER: Numerical Reasoning on Knowledge Graphs from a Chain Perspective
Ze Zhao, Bin Lu, Xiaoying Gan, Gu Tang, Luoyi Fu, Xinbing Wang
Reasoning over Knowledge Graphs (KGs) plays a pivotal role in knowledge graph completion or question answering systems, providing richer and more accurate triples and attributes. As numerical attributes become increasingly essential in characterizing entities and relations in KGs, the ability to reason over these attributes has gained significant importance. Existing graph-based methods such as Graph Neural Networks (GNNs) and Knowledge Graph Embeddings (KGEs), primarily focus on aggregating homogeneous local neighbors and implicitly embedding diverse triples. However, these approaches often fail to fully leverage the potential of logical paths within the graph, limiting their effectiveness in exploiting the reasoning process. To address these limitations, we propose ChainsFormer, a novel chain-based framework designed to support numerical reasoning. Chainsformer not only explicitly constructs logical chains but also expands the reasoning depth to multiple hops. Specially, we introduces Relation-Attribute Chains (RA-Chains), a specialized logic chain, to model sequential reasoning patterns. ChainsFormer captures the step-by-step nature of multi-hop reasoning along RA-Chains by employing sequential in-context learning. To mitigate the impact of noisy chains, we propose a hyperbolic affinity scoring mechanism that selects relevant logic chains in a variable-resolution space. Furthermore, ChainsFormer incorporates an attention-based numerical reasoner to identify critical reasoning paths, enhancing both reasoning accuracy and transparency. Experimental results demonstrate that ChainsFormer significantly outperforms state-of-the-art methods, achieving up to a 20.0% improvement in performance. The implementations are available at this https URL. [Submitted on 19 Apr 2025]

Time Up! An Empirical Study of LLM Reasoning Ability Under Output Length Constraint
Yi Sun, Han Wang, Jiaqiang Li, Jiacheng Liu, Xiangyu Li, Hao Wen, Huiwen Zheng, Yan Liang, Yuanchun Li, Yunxin Liu
Recent work has demonstrated the remarkable potential of Large Language Models (LLMs) in test-time scaling. By making the models think before answering, they are able to achieve much higher accuracy with extra inference computation. However, in many real-world scenarios, models are used under time constraints, where an answer should be given to the user within a certain output length. It is unclear whether and how the reasoning abilities of LLMs remain effective under such constraints. We take a first look at this problem by conducting an in-depth empirical study. Specifically, we test more than 25 LLMs on common reasoning datasets under a wide range of output length budgets, and we analyze the correlation between the inference accuracy and various properties including model type, model size, prompt style, etc. We also consider the mappings between the token budgets and the actual on-device latency budgets. The results have demonstrated several interesting findings regarding the budget-aware LLM reasoning that differ from the unconstrained situation, e.g. the optimal choices of model sizes and prompts change under different budgets. These findings offer practical guidance for users to deploy LLMs under real-world latency constraints. [Submitted on 19 Apr 2025]

Mathematical Programming Models for Exact and Interpretable Formulation of Neural Networks
Masoud Ataei, Edrin Hasaj, Jacob Gipp, Sepideh Forouzi
This paper presents a unified mixed-integer programming framework for training sparse and interpretable neural networks. We develop exact formulations for both fully connected and convolutional architectures by modeling nonlinearities such as ReLU activations through binary variables and encoding structural sparsity via filter- and layer-level pruning constraints. The resulting models integrate parameter learning, architecture selection, and structural regularization within a single optimization problem, yielding globally optimal solutions with respect to a composite objective that balances prediction accuracy, weight sparsity, and architectural compactness. The mixed-integer programming formulation accommodates piecewise-linear operations, including max pooling and activation gating, and permits precise enforcement of logic-based or domain-specific constraints. By incorporating considerations of interpretability, sparsity, and verifiability directly into the training process, the proposed framework bridges a range of research areas including explainable artificial intelligence, symbolic reasoning, and formal verification. [Submitted on 19 Apr 2025]

The Geometry of Self-Verification in a Task-Specific Reasoning Model
Andrew Lee, Lihao Sun, Chris Wendler, Fernanda Viégas, Martin Wattenberg
How do reasoning models verify their own answers? We study this question by training a model using DeepSeek R1's recipe on the CountDown task. We leverage the fact that preference tuning leads to mode collapse, resulting in a model that always produces highly structured and easily parse-able chain-of-thought sequences. With this setup, we do a top-down and bottom-up analysis to reverse-engineer how the model verifies its outputs. Our top-down analysis reveals Gated Linear Unit (GLU) weights encoding verification-related tokens, such as ``success'' or ``incorrect'', which activate according to the correctness of the model's reasoning steps. Our bottom-up analysis reveals that ``previous-token heads'' are mainly responsible for model verification. Our analyses meet in the middle: drawing inspiration from inter-layer communication channels, we use the identified GLU vectors to localize as few as three attention heads that can disable model verification, pointing to a necessary component of a potentially larger verification circuit. [Submitted on 19 Apr 2025]

Meta-Thinking in LLMs via Multi-Agent Reinforcement Learning: A Survey
Ahsan Bilal, Muhammad Ahmed Mohsin, Muhammad Umer, Muhammad Awais Khan Bangash, Muhammad Ali Jamshed
This survey explores the development of meta-thinking capabilities in Large Language Models (LLMs) from a Multi-Agent Reinforcement Learning (MARL) perspective. Meta-thinking self-reflection, assessment, and control of thinking processes is an important next step in enhancing LLM reliability, flexibility, and performance, particularly for complex or high-stakes tasks. The survey begins by analyzing current LLM limitations, such as hallucinations and the lack of internal self-assessment mechanisms. It then talks about newer methods, including RL from human feedback (RLHF), self-distillation, and chain-of-thought prompting, and each of their limitations. The crux of the survey is to talk about how multi-agent architectures, namely supervisor-agent hierarchies, agent debates, and theory of mind frameworks, can emulate human-like introspective behavior and enhance LLM robustness. By exploring reward mechanisms, self-play, and continuous learning methods in MARL, this survey gives a comprehensive roadmap to building introspective, adaptive, and trustworthy LLMs. Evaluation metrics, datasets, and future research avenues, including neuroscience-inspired architectures and hybrid symbolic reasoning, are also discussed. [Submitted on 20 Apr 2025]

Learning from Reasoning Failures via Synthetic Data Generation
Gabriela Ben Melech Stan, Estelle Aflalo, Avinash Madasu, Vasudev Lal, Phillip Howard
Training models on synthetic data has emerged as an increasingly important strategy for improving the performance of generative AI. This approach is particularly helpful for large multimodal models (LMMs) due to the relative scarcity of high-quality paired image-text data compared to language-only data. While a variety of methods have been proposed for generating large multimodal datasets, they do not tailor the synthetic data to address specific deficiencies in the reasoning abilities of LMMs which will be trained with the generated dataset. In contrast, humans often learn in a more efficient manner by seeking out examples related to the types of reasoning where they have failed previously. Inspired by this observation, we propose a new approach for synthetic data generation which is grounded in the analysis of an existing LMM's reasoning failures. Our methodology leverages frontier models to automatically analyze errors produced by a weaker LMM and propose new examples which can be used to correct the reasoning failure via additional training, which are then further filtered to ensure high quality. We generate a large multimodal instruction tuning dataset containing over 553k examples using our approach and conduct extensive experiments demonstrating its utility for improving the performance of LMMs on multiple downstream tasks. Our results show that models trained on our synthetic data can even exceed the performance of LMMs trained on an equivalent amount of additional real data, demonstrating the high value of generating synthetic data targeted to specific reasoning failure modes in LMMs. We will make our dataset and code publicly available. [Submitted on 20 Apr 2025]

A Framework for Benchmarking and Aligning Task-Planning Safety in LLM-Based Embodied Agents
Yuting Huang, Leilei Ding, Zhipeng Tang, Tianfu Wang, Xinrui Lin, Wuyang Zhang, Mingxiao Ma, Yanyong Zhang
Large Language Models (LLMs) exhibit substantial promise in enhancing task-planning capabilities within embodied agents due to their advanced reasoning and comprehension. However, the systemic safety of these agents remains an underexplored frontier. In this study, we present Safe-BeAl, an integrated framework for the measurement (SafePlan-Bench) and alignment (Safe-Align) of LLM-based embodied agents' behaviors. SafePlan-Bench establishes a comprehensive benchmark for evaluating task-planning safety, encompassing 2,027 daily tasks and corresponding environments distributed across 8 distinct hazard categories (e.g., Fire Hazard). Our empirical analysis reveals that even in the absence of adversarial inputs or malicious intent, LLM-based agents can exhibit unsafe behaviors. To mitigate these hazards, we propose Safe-Align, a method designed to integrate physical-world safety knowledge into LLM-based embodied agents while maintaining task-specific performance. Experiments across a variety of settings demonstrate that Safe-BeAl provides comprehensive safety validation, improving safety by 8.55 - 15.22%, compared to embodied agents based on GPT-4, while ensuring successful task completion. [Submitted on 20 Apr 2025]

AlignRAG: An Adaptable Framework for Resolving Misalignments in Retrieval-Aware Reasoning of RAG
Jiaqi Wei, Hao Zhou, Xiang Zhang, Di Zhang, Zijie Qiu, Wei Wei, Jinzhe Li, Wanli Ouyang, Siqi Sun
Retrieval-augmented generation (RAG) has emerged as a foundational paradigm for knowledge-grounded text generation. However, existing RAG pipelines often fail to ensure that the reasoning trajectories align with the evidential constraints imposed by retrieved content. In this paper, we reframe RAG as a problem of retrieval-aware reasoning and identify a core challenge: reasoning misalignment-the mismatch between a model's reasoning trajectory and the retrieved evidence. To address this challenge, we propose AlignRAG, a novel test-time framework that mitigates reasoning misalignment through iterative Critique-Driven Alignment (CDA) steps. In contrast to prior approaches that rely on static training or post-hoc selection, AlignRAG actively refines reasoning trajectories during inference by enforcing fine-grained alignment with evidence. Our framework introduces a new paradigm for retrieval-aware reasoning by: (1) constructing context-rich training corpora; (2) generating contrastive critiques from preference-aware reasoning trajectories; (3) training a dedicated \textit{Critic Language Model (CLM)} to identify reasoning misalignments; and (4) applying CDA steps to optimize reasoning trajectories iteratively. Empirical results demonstrate that AlignRAG consistently outperforms all baselines and could integrate as a plug-and-play module into existing RAG pipelines without further changes. By reconceptualizing RAG as a structured reasoning trajectory and establishing the test-time framework for correcting reasoning misalignments in RAG, AlignRAG provides practical advancements for retrieval-aware generation. [Submitted on 21 Apr 2025]

OTC: Optimal Tool Calls via Reinforcement Learning
Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen, Jiahao Qiu, Shijue Huang, Bowen Jin, Mengdi Wang, Kam-Fai Wong, Heng Ji
Tool-integrated reasoning (TIR) augments large language models (LLMs) with the ability to invoke external tools, such as search engines and code interpreters, to solve tasks beyond the capabilities of language-only reasoning. While reinforcement learning (RL) has shown promise in improving TIR by optimizing final answer correctness, existing approaches often overlook the efficiency and cost associated with tool usage. This can lead to suboptimal behavior, including excessive tool calls that increase computational and financial overhead, or insufficient tool use that compromises answer quality. In this work, we propose Optimal Tool Call-controlled Policy Optimization (OTC-PO), a simple yet effective RL-based framework that encourages models to produce accurate answers with minimal tool calls. Our method introduces a tool-integrated reward that jointly considers correctness and tool efficiency, promoting high tool productivity. We instantiate this framework within both Proximal Policy Optimization (PPO) and Group Relative Preference Optimization (GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5 and Qwen-Math across multiple QA benchmarks show that our approach reduces tool calls by up to 73.1\% and improves tool productivity by up to 229.4\%, while maintaining comparable answer accuracy. To the best of our knowledge, this is the first RL-based framework that explicitly optimizes tool-use efficiency in TIR. [Submitted on 21 Apr 2025]

EducationQ: Evaluating LLMs' Teaching Capabilities Through Multi-Agent Dialogue Framework
Yao Shi, Rongkeng Liang, Yong Xu
Large language models (LLMs) increasingly serve as educational tools, yet evaluating their teaching capabilities remains challenging due to the resource-intensive, context-dependent, and methodologically complex nature of teacher-student interactions. We introduce EducationQ, a multi-agent dialogue framework that efficiently assesses teaching capabilities through simulated dynamic educational scenarios, featuring specialized agents for teaching, learning, and evaluation. Testing 14 LLMs across major AI Organizations (OpenAI, Meta, Google, Anthropic, and others) on 1,498 questions spanning 13 disciplines and 10 difficulty levels reveals that teaching effectiveness does not correlate linearly with model scale or general reasoning capabilities - with some smaller open-source models outperforming larger commercial counterparts in teaching contexts. This finding highlights a critical gap in current evaluations that prioritize knowledge recall over interactive pedagogy. Our mixed-methods evaluation, combining quantitative metrics with qualitative analysis and expert case studies, identifies distinct pedagogical strengths employed by top-performing models (e.g., sophisticated questioning strategies, adaptive feedback mechanisms). Human expert evaluations show 78% agreement with our automated qualitative analysis of effective teaching behaviors, validating our methodology. EducationQ demonstrates that LLMs-as-teachers require specialized optimization beyond simple scaling, suggesting next-generation educational AI prioritize targeted enhancement of specific pedagogical effectiveness. [Submitted on 21 Apr 2025]

FlowReasoner: Reinforcing Query-Level Meta-Agents
Hongcheng Gao, Yue Liu, Yufei He, Longxu Dou, Chao Du, Zhijie Deng, Bryan Hooi, Min Lin, Tianyu Pang
This paper proposes a query-level meta-agent named FlowReasoner to automate the design of query-level multi-agent systems, i.e., one system per user query. Our core idea is to incentivize a reasoning-based meta-agent via external execution feedback. Concretely, by distilling DeepSeek R1, we first endow the basic reasoning ability regarding the generation of multi-agent systems to FlowReasoner. Then, we further enhance it via reinforcement learning (RL) with external execution feedback. A multi-purpose reward is designed to guide the RL training from aspects of performance, complexity, and efficiency. In this manner, FlowReasoner is enabled to generate a personalized multi-agent system for each user query via deliberative reasoning. Experiments on both engineering and competition code benchmarks demonstrate the superiority of FlowReasoner. Remarkably, it surpasses o1-mini by 10.52% accuracy across three benchmarks. The code is available at this https URL. [Submitted on 21 Apr 2025]

Leveraging Language Models for Automated Patient Record Linkage
Mohammad Beheshti, Lovedeep Gondara, Iris Zachary
Objective: Healthcare data fragmentation presents a major challenge for linking patient data, necessitating robust record linkage to integrate patient records from diverse sources. This study investigates the feasibility of leveraging language models for automated patient record linkage, focusing on two key tasks: blocking and matching. Materials and Methods: We utilized real-world healthcare data from the Missouri Cancer Registry and Research Center, linking patient records from two independent sources using probabilistic linkage as a baseline. A transformer-based model, RoBERTa, was fine-tuned for blocking using sentence embeddings. For matching, several language models were experimented under fine-tuned and zero-shot settings, assessing their performance against ground truth labels. Results: The fine-tuned blocking model achieved a 92% reduction in the number of candidate pairs while maintaining near-perfect recall. In the matching task, fine-tuned Mistral-7B achieved the best performance with only 6 incorrect predictions. Among zero-shot models, Mistral-Small-24B performed best, with a total of 55 incorrect predictions. Discussion: Fine-tuned language models achieved strong performance in patient record blocking and matching with minimal errors. However, they remain less accurate and efficient than a hybrid rule-based and probabilistic approach for blocking. Additionally, reasoning models like DeepSeek-R1 are impractical for large-scale record linkage due to high computational costs. Conclusion: This study highlights the potential of language models for automating patient record linkage, offering improved efficiency by eliminating the manual efforts required to perform patient record linkage. Overall, language models offer a scalable solution that can enhance data integration, reduce manual effort, and support disease surveillance and research. [Submitted on 21 Apr 2025]

Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning
Jie Cheng, Ruixi Qiao, Lijun Li, Chao Guo, Junle Wang, Gang Xiong, Yisheng Lv, Fei-Yue Wang
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. Code and models are available at this https URL. [Submitted on 21 Apr 2025]

A Survey on (M)LLM-Based GUI Agents
Fei Tang, Haolei Xu, Hang Zhang, Siqi Chen, Xingyu Wu, Yongliang Shen, Wenqi Zhang, Guiyang Hou, Zeqi Tan, Yuchen Yan, Kaitao Song, Jian Shao, Weiming Lu, Jun Xiao, Yueting Zhuang
Graphical User Interface (GUI) Agents have emerged as a transformative paradigm in human-computer interaction, evolving from rule-based automation scripts to sophisticated AI-driven systems capable of understanding and executing complex interface operations. This survey provides a comprehensive examination of the rapidly advancing field of LLM-based GUI Agents, systematically analyzing their architectural foundations, technical components, and evaluation methodologies. We identify and analyze four fundamental components that constitute modern GUI Agents: (1) perception systems that integrate text-based parsing with multimodal understanding for comprehensive interface comprehension; (2) exploration mechanisms that construct and maintain knowledge bases through internal modeling, historical experience, and external information retrieval; (3) planning frameworks that leverage advanced reasoning methodologies for task decomposition and execution; and (4) interaction systems that manage action generation with robust safety controls. Through rigorous analysis of these components, we reveal how recent advances in large language models and multimodal learning have revolutionized GUI automation across desktop, mobile, and web platforms. We critically examine current evaluation frameworks, highlighting methodological limitations in existing benchmarks while proposing directions for standardization. This survey also identifies key technical challenges, including accurate element localization, effective knowledge retrieval, long-horizon planning, and safety-aware execution control, while outlining promising research directions for enhancing GUI Agents' capabilities. Our systematic review provides researchers and practitioners with a thorough understanding of the field's current state and offers insights into future developments in intelligent interface automation. [Submitted on 27 Mar 2025]

The Human Robot Social Interaction (HSRI) Dataset: Benchmarking Foundational Models' Social Reasoning
Dong Won Lee, Yubin Kim, Denison Guvenoz, Sooyeon Jeong, Parker Malachowsky, Louis-Philippe Morency, Cynthia Breazeal, Hae Won Park
Our work aims to advance the social reasoning of embodied artificial intelligence (AI) agents in real-world social interactions. Recently, language models (LMs) and foundational models (FMs) are being utilized as automatic evaluators of human-AI interactions with the goal of eventually being used to improve the policy of the AI agent. To enable further research in this direction, we introduce a large-scale real-world Human Robot Social Interaction (HSRI) Dataset to benchmark the capabilities of LMs and FMs to identify and reason about social interactions, specifically with regard to robot social errors and competencies . Our dataset consists of 400 real-world human social robot interaction videos and over 10K annotations, detailing the robot's social errors, competencies, rationale, and corrective actions, capturing unique aspects of human-AI interaction only present in real-world interactions. To further assess AI models' ability to reason about social interactions, we propose eight new benchmark tasks for evaluating centered around whether AI models can (1) evaluate social interactions via detecting social errors and competencies, (2) identify the explanatory factors associated to errors and competencies, (3) understand the flow of real-world social interactions, and (4) provide reasons and corrective actions for social errors. Human studies and experiments with modern LMs and FMs reveal that current models struggle with these tasks, demonstrating that our dataset and benchmark provides a step forward towards socially intelligent AI. [Submitted on 7 Apr 2025]

NEMOTRON-CROSSTHINK: Scaling Self-Learning beyond Math Reasoning
Syeda Nahida Akter, Shrimai Prabhumoye, Matvei Novikov, Seungju Han, Ying Lin, Evelina Bakhturi, Eric Nyberg, Yejin Choi, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro
Large Language Models (LLMs) have shown strong reasoning capabilities, particularly when enhanced through Reinforcement Learning (RL). While prior work has successfully applied RL to mathematical reasoning -- where rules and correctness are well-defined -- generalizing these methods to broader reasoning domains remains challenging due to limited data, the lack of verifiable reward structures, and diverse task requirements. In this work, we propose NEMOTRON-CROSSTHINK, a framework that systematically incorporates multi-domain corpora, including both synthetic and real-world question-answer pairs, into RL training to improve generalization across diverse reasoning tasks. NEMOTRON-CROSSTHINK addresses key challenges by (1) incorporating data from varied sources spanning STEM, humanities, social sciences, etc.; (2) applying structured templates (e.g., multiple-choice and open-ended) to control answer-space complexity; (3) filtering for verifiable answers; and (4) optimizing data blending strategies that utilizes data from multiple sources effectively. Our approach enables scalable and verifiable reward modeling beyond mathematics and demonstrates improved accuracies on both math (MATH-500: +30.1%, AMC23:+27.5%) and non-math reasoning benchmarks (MMLU-PRO: +12.8%, GPQA-DIAMOND: +11.3%, AGIEVAL: +15.1%, SUPERGPQA: +3.8%). Moreover, NEMOTRON-CROSSTHINK exhibits significantly improved response efficiency -- using 28% fewer tokens for correct answers -- highlighting more focused and effective reasoning. Through NEMOTRON-CROSSTHINK, we demonstrate that integrating multi-domain, multi-format data in RL leads to more accurate, efficient, and generalizable LLMs. [Submitted on 15 Apr 2025]

Intelligence of Things: A Spatial Context-Aware Control System for Smart Devices
Sukanth Kalivarathan, Muhmmad Abrar Raja Mohamed, Aswathy Ravikumar, S Harini
This paper introduces Intelligence of Things (INOT), a novel spatial context-aware control system that enhances smart home automation through intuitive spatial reasoning. Current smart home systems largely rely on device-specific identifiers, limiting user interaction to explicit naming conventions rather than natural spatial references. INOT addresses this limitation through a modular architecture that integrates Vision Language Models with IoT control systems to enable natural language commands with spatial context (e.g., "turn on the light near the window"). The system comprises key components including an Onboarding Inference Engine, Zero-Shot Device Detection, Spatial Topology Inference, and Intent-Based Command Synthesis. A comprehensive user study with 15 participants demonstrated INOT's significant advantages over conventional systems like Google Home Assistant, with users reporting reduced cognitive workload (NASA-TLX scores decreased by an average of 13.17 points), higher ease-of-use ratings, and stronger preference (14 out of 15 participants). By eliminating the need to memorize device identifiers and enabling context-aware spatial commands, INOT represents a significant advancement in creating more intuitive and accessible smart home control systems. [Submitted on 16 Apr 2025]

Open-Medical-R1: How to Choose Data for RLVR Training at Medicine Domain
Zhongxi Qiu, Zhang Zhang, Yan Hu, Heng Li, Jiang Liu
This paper explores optimal data selection strategies for Reinforcement Learning with Verified Rewards (RLVR) training in the medical domain. While RLVR has shown exceptional potential for enhancing reasoning capabilities in large language models, most prior implementations have focused on mathematics and logical puzzles, with limited exploration of domain-specific applications like medicine. We investigate four distinct data sampling strategies from MedQA-USMLE: random sampling (baseline), and filtering using Phi-4, Gemma-3-27b-it, and Gemma-3-12b-it models. Using Gemma-3-12b-it as our base model and implementing Group Relative Policy Optimization (GRPO), we evaluate performance across multiple benchmarks including MMLU, GSM8K, MMLU-Pro, and CMMLU. Our findings demonstrate that models trained on filtered data generally outperform those trained on randomly selected samples. Notably, training on self-filtered samples (using Gemma-3-12b-it for filtering) achieved superior performance in medical domains but showed reduced robustness across different benchmarks, while filtering with larger models from the same series yielded better overall robustness. These results provide valuable insights into effective data organization strategies for RLVR in specialized domains and highlight the importance of thoughtful data selection in achieving optimal performance. You can access our repository (this https URL) to get the codes. [Submitted on 16 Apr 2025]

ToolRL: Reward is All Tool Learning Needs
Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan Tur, Heng Ji
Current Large Language Models (LLMs) often undergo supervised fine-tuning (SFT) to acquire tool use capabilities. However, SFT struggles to generalize to unfamiliar or complex tool use scenarios. Recent advancements in reinforcement learning (RL), particularly with R1-like models, have demonstrated promising reasoning and generalization abilities. Yet, reward design for tool use presents unique challenges: multiple tools may be invoked with diverse parameters, and coarse-grained reward signals, such as answer matching, fail to offer the finegrained feedback required for effective learning. In this work, we present the first comprehensive study on reward design for tool selection and application tasks within the RL paradigm. We systematically explore a wide range of reward strategies, analyzing their types, scales, granularity, and temporal dynamics. Building on these insights, we propose a principled reward design tailored for tool use tasks and apply it to train LLMs using Group Relative Policy Optimization (GRPO). Empirical evaluations across diverse benchmarks demonstrate that our approach yields robust, scalable, and stable training, achieving a 17% improvement over base models and a 15% gain over SFT models. These results highlight the critical role of thoughtful reward design in enhancing the tool use capabilities and generalization performance of LLMs. All the codes are released to facilitate future research. [Submitted on 16 Apr 2025]

Gradual Binary Search and Dimension Expansion : A general method for activation quantization in LLMs
Lucas Maisonnave, Cyril Moineau, Olivier Bichler, Fabrice Rastello
Large language models (LLMs) have become pivotal in artificial intelligence, demonstrating strong capabilities in reasoning, understanding, and generating data. However, their deployment on edge devices is hindered by their substantial size, often reaching several billion parameters. Quantization is a widely used method to reduce memory usage and inference time, however LLMs present unique challenges due to the prevalence of outliers in their activations. In this work, we leverage the theoretical advantages of Hadamard matrices over random rotation matrices to push the boundaries of quantization in LLMs. We demonstrate that Hadamard matrices are more effective in reducing outliers, which are a significant obstacle in achieving low-bit quantization. Our method based on a gradual binary search enables 3-bit quantization for weights, activations, and key-value (KV) caches, resulting in a 40\% increase in accuracy on common benchmarks compared to SoTA methods. We extend the use of rotation matrices to support non-power-of-2 embedding dimensions, similar to the Qwen architecture, by employing the Paley algorithm. We theoretically demonstrates the superiority of Hadamard matrices in reducing this http URL achieved 3-bit quantization for weights, activations, and KV cache, significantly enhancing model performance. Our experimental results on multiple models family like Mistral, LLaMA, and Qwen demonstrate the effectiveness of our approach, outperforming existing methods and enabling practical 3-bit quantization. [Submitted on 18 Apr 2025]

LogicTree: Structured Proof Exploration for Coherent and Rigorous Logical Reasoning with Large Language Models
Kang He, Kaushik Roy
Large language models (LLMs) have achieved remarkable multi-step reasoning capabilities across various domains. However, LLMs still face distinct challenges in complex logical reasoning, as (1) proof-finding requires systematic exploration and the maintenance of logical coherence and (2) searching the right combination of premises at each reasoning step is inherently challenging in tasks with large premise space. To address this, we propose LogicTree, an inference-time modular framework employing algorithm-guided search to automate structured proof exploration and ensure logical coherence. Advancing beyond tree-of-thought (ToT), we incorporate caching mechanism into LogicTree to enable effective utilization of historical knowledge, preventing reasoning stagnation and minimizing redundancy. Furthermore, we address the combinatorial complexity of premise search by decomposing it into a linear process. The refined premise selection restricts subsequent inference to at most one derivation per step, enhancing reasoning granularity and enforcing strict step-by-step reasoning. Additionally, we introduce two LLM-free heuristics for premise prioritization, enabling strategic proof search. Experimental results on five datasets demonstrate that LogicTree optimally scales inference-time computation to achieve higher proof accuracy, surpassing chain-of-thought (CoT) and ToT with average gains of 23.6% and 12.5%, respectively, on GPT-4o. Moreover, within LogicTree, GPT-4o outperforms o3-mini by 7.6% on average. [Submitted on 18 Apr 2025]

HF4Rec: Human-Like Feedback-Driven Optimization Framework for Explainable Recommendation
Jiakai Tang, Jingsen Zhang, Zihang Tian, Xueyang Feng, Lei Wang, Xu Chen
Recent advancements in explainable recommendation have greatly bolstered user experience by elucidating the decision-making rationale. However, the existing methods actually fail to provide effective feedback signals for potentially better or worse generated explanations due to their reliance on traditional supervised learning paradigms in sparse interaction data. To address these issues, we propose a novel human-like feedback-driven optimization framework. This framework employs a dynamic interactive optimization mechanism for achieving human-centered explainable requirements without incurring high labor costs. Specifically, we propose to utilize large language models (LLMs) as human simulators to predict human-like feedback for guiding the learning process. To enable the LLMs to deeply understand the task essence and meet user's diverse personalized requirements, we introduce a human-induced customized reward scoring method, which helps stimulate the language understanding and logical reasoning capabilities of LLMs. Furthermore, considering the potential conflicts between different perspectives of explanation quality, we introduce a principled Pareto optimization that transforms the multi-perspective quality enhancement task into a multi-objective optimization problem for improving explanation performance. At last, to achieve efficient model training, we design an off-policy optimization pipeline. By incorporating a replay buffer and addressing the data distribution biases, we can effectively improve data utilization and enhance model generality. Extensive experiments on four datasets demonstrate the superiority of our approach. [Submitted on 19 Apr 2025]

Walk the Talk? Measuring the Faithfulness of Large Language Model Explanations
Katie Matton, Robert Osazuwa Ness, John Guttag, Emre Kıcıman
Large language models (LLMs) are capable of generating plausible explanations of how they arrived at an answer to a question. However, these explanations can misrepresent the model's "reasoning" process, i.e., they can be unfaithful. This, in turn, can lead to over-trust and misuse. We introduce a new approach for measuring the faithfulness of LLM explanations. First, we provide a rigorous definition of faithfulness. Since LLM explanations mimic human explanations, they often reference high-level concepts in the input question that purportedly influenced the model. We define faithfulness in terms of the difference between the set of concepts that LLM explanations imply are influential and the set that truly are. Second, we present a novel method for estimating faithfulness that is based on: (1) using an auxiliary LLM to modify the values of concepts within model inputs to create realistic counterfactuals, and (2) using a Bayesian hierarchical model to quantify the causal effects of concepts at both the example- and dataset-level. Our experiments show that our method can be used to quantify and discover interpretable patterns of unfaithfulness. On a social bias task, we uncover cases where LLM explanations hide the influence of social bias. On a medical question answering task, we uncover cases where LLM explanations provide misleading claims about which pieces of evidence influenced the model's decisions. [Submitted on 19 Apr 2025]

Diverse Prompts: Illuminating the Prompt Space of Large Language Models with MAP-Elites
Gabriel Machado Santos, Rita Maria da Silva Julia, Marcelo Zanchetta do Nascimento
Prompt engineering is essential for optimizing large language models (LLMs), yet the link between prompt structures and task performance remains underexplored. This work introduces an evolutionary approach that combines context-free grammar (CFG) with the MAP-Elites algorithm to systematically explore the prompt space. Our method prioritizes quality and diversity, generating high-performing and structurally varied prompts while analyzing their alignment with diverse tasks by varying traits such as the number of examples (shots) and reasoning depth. By systematically mapping the phenotypic space, we reveal how structural variations influence LLM performance, offering actionable insights for task-specific and adaptable prompt design. Evaluated on seven BigBench Lite tasks across multiple LLMs, our results underscore the critical interplay of quality and diversity, advancing the effectiveness and versatility of LLMs. [Submitted on 19 Apr 2025]

Hydra: An Agentic Reasoning Approach for Enhancing Adversarial Robustness and Mitigating Hallucinations in Vision-Language Models
Chung-En (Johnny)Yu, Hsuan-Chih (Neil)Chen, Brian Jalaian, Nathaniel D. Bastian
To develop trustworthy Vision-Language Models (VLMs), it is essential to address adversarial robustness and hallucination mitigation, both of which impact factual accuracy in high-stakes applications such as defense and healthcare. Existing methods primarily focus on either adversarial defense or hallucination post-hoc correction, leaving a gap in unified robustness strategies. We introduce \textbf{Hydra}, an adaptive agentic framework that enhances plug-in VLMs through iterative reasoning, structured critiques, and cross-model verification, improving both resilience to adversarial perturbations and intrinsic model errors. Hydra employs an Action-Critique Loop, where it retrieves and critiques visual information, leveraging Chain-of-Thought (CoT) and In-Context Learning (ICL) techniques to refine outputs dynamically. Unlike static post-hoc correction methods, Hydra adapts to both adversarial manipulations and intrinsic model errors, making it robust to malicious perturbations and hallucination-related inaccuracies. We evaluate Hydra on four VLMs, three hallucination benchmarks, two adversarial attack strategies, and two adversarial defense methods, assessing performance on both clean and adversarial inputs. Results show that Hydra surpasses plug-in VLMs and state-of-the-art (SOTA) dehallucination methods, even without explicit adversarial defenses, demonstrating enhanced robustness and factual consistency. By bridging adversarial resistance and hallucination mitigation, Hydra provides a scalable, training-free solution for improving the reliability of VLMs in real-world applications. [Submitted on 19 Apr 2025]

Causality for Natural Language Processing
Zhijing Jin
Causal reasoning is a cornerstone of human intelligence and a critical capability for artificial systems aiming to achieve advanced understanding and decision-making. This thesis delves into various dimensions of causal reasoning and understanding in large language models (LLMs). It encompasses a series of studies that explore the causal inference skills of LLMs, the mechanisms behind their performance, and the implications of causal and anticausal learning for natural language processing (NLP) tasks. Additionally, it investigates the application of causal reasoning in text-based computational social science, specifically focusing on political decision-making and the evaluation of scientific impact through citations. Through novel datasets, benchmark tasks, and methodological frameworks, this work identifies key challenges and opportunities to improve the causal capabilities of LLMs, providing a comprehensive foundation for future research in this evolving field. [Submitted on 20 Apr 2025]

ReasoningV: Efficient Verilog Code Generation with Adaptive Hybrid Reasoning Model
Haiyan Qin, Zhiwei Xie, Jingjing Li, Liangchen Li, Xiaotong Feng, Junzhan Liu, Wang Kang
Large Language Models (LLMs) have advanced Verilog code generation significantly, yet face challenges in data quality, reasoning capabilities, and computational efficiency. This paper presents ReasoningV, a novel model employing a hybrid reasoning strategy that integrates trained intrinsic capabilities with dynamic inference adaptation for Verilog code generation. Our framework introduces three complementary innovations: (1) ReasoningV-5K, a high-quality dataset of 5,000 functionally verified instances with reasoning paths created through multi-dimensional filtering of PyraNet samples; (2) a two-stage training approach combining parameter-efficient fine-tuning for foundational knowledge with full-parameter optimization for enhanced reasoning; and (3) an adaptive reasoning mechanism that dynamically adjusts reasoning depth based on problem complexity, reducing token consumption by up to 75\% while preserving performance. Experimental results demonstrate ReasoningV's effectiveness with a pass@1 accuracy of 57.8\% on VerilogEval-human, achieving performance competitive with leading commercial models like Gemini-2.0-flash (59.5\%) and exceeding the previous best open-source model by 10.4 percentage points. ReasoningV offers a more reliable and accessible pathway for advancing AI-driven hardware design automation, with our model, data, and code available at this https URL. [Submitted on 20 Apr 2025]

AlphaZero-Edu: Making AlphaZero Accessible to Everyone
Binjie Guo, Hanyu Zheng, Guowei Su, Ru Zhang, Haohan Jiang, Xurong Lin, Hongyan Wei, Aisheng Mo, Jie Li, Zhiyuan Qian, Zhuhao Zhang, Xiaoyuan Cheng
Recent years have witnessed significant progress in reinforcement learning, especially with Zero-like paradigms, which have greatly boosted the generalization and reasoning abilities of large-scale language models. Nevertheless, existing frameworks are often plagued by high implementation complexity and poor reproducibility. To tackle these challenges, we present AlphaZero-Edu, a lightweight, education-focused implementation built upon the mathematical framework of AlphaZero. It boasts a modular architecture that disentangles key components, enabling transparent visualization of the algorithmic processes. Additionally, it is optimized for resource-efficient training on a single NVIDIA RTX 3090 GPU and features highly parallelized self-play data generation, achieving a 3.2-fold speedup with 8 processes. In Gomoku matches, the framework has demonstrated exceptional performance, achieving a consistently high win rate against human opponents. AlphaZero-Edu has been open-sourced at this https URL, providing an accessible and practical benchmark for both academic research and industrial applications. [Submitted on 20 Apr 2025]

An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework
Zeyu Wang, Frank P.-W. Lo, Qian Chen, Yongqi Zhang, Chen Lin, Xu Chen, Zhenhua Yu, Alexander J. Thompson, Eric M. Yeatman, Benny P. L. Lo
Existing LLM-enabled multi-agent frameworks are predominantly limited to digital or simulated environments and confined to narrowly focused knowledge domain, constraining their applicability to complex engineering tasks that require the design of physical embodiment, cross-disciplinary integration, and constraint-aware reasoning. This work proposes a multi-agent autonomous mechatronics design framework, integrating expertise across mechanical design, optimization, electronics, and software engineering to autonomously generate functional prototypes with minimal direct human design input. Operating primarily through a language-driven workflow, the framework incorporates structured human feedback to ensure robust performance under real-world constraints. To validate its capabilities, the framework is applied to a real-world challenge involving autonomous water-quality monitoring and sampling, where traditional methods are labor-intensive and ecologically disruptive. Leveraging the proposed system, a fully functional autonomous vessel was developed with optimized propulsion, cost-effective electronics, and advanced control. The design process was carried out by specialized agents, including a high-level planning agent responsible for problem abstraction and dedicated agents for structural, electronics, control, and software development. This approach demonstrates the potential of LLM-based multi-agent systems to automate real-world engineering workflows and reduce reliance on extensive domain expertise. [Submitted on 20 Apr 2025]

Video-MMLU: A Massive Multi-Discipline Lecture Understanding Benchmark
Enxin Song, Wenhao Chai, Weili Xu, Jianwen Xie, Yuxuan Liu, Gaoang Wang
Recent advancements in language multimodal models (LMMs) for video have demonstrated their potential for understanding video content, yet the task of comprehending multi-discipline lectures remains largely unexplored. We introduce Video-MMLU, a massive benchmark designed to evaluate the capabilities of LMMs in understanding Multi-Discipline Lectures. We evaluate over 90 open-source and proprietary models, ranging from 0.5B to 40B parameters. Our results highlight the limitations of current models in addressing the cognitive challenges presented by these lectures, especially in tasks requiring both perception and reasoning. Additionally, we explore how the number of visual tokens and the large language models influence performance, offering insights into the interplay between multimodal perception and reasoning in lecture comprehension. [Submitted on 20 Apr 2025]

SWE-Synth: Synthesizing Verifiable Bug-Fix Data to Enable Large Language Models in Resolving Real-World Bugs
Minh V.T. Pham, Huy N. Phan, Hoang N. Phan, Cuong Le Chi, Tien N. Nguyen, Nghi D. Q. Bui
Large language models (LLMs) are transforming automated program repair (APR) through agent-based approaches that localize bugs, generate patches, and verify fixes. However, the lack of high-quality, scalable training datasets, especially those with verifiable outputs and intermediate reasoning traces-limits progress, particularly for open-source models. In this work, we present SWE-Synth, a framework for synthesizing realistic, verifiable, and process-aware bug-fix datasets at the repository level. SWE-Synth leverages LLM agents to simulate debugging workflows, producing not only bug-fix pairs but also test cases and structured repair trajectories. Compared to manually curated datasets, our method scales with minimal human effort while preserving contextual richness and correctness. Experiments show that models trained on SWE-Synth outperform those trained on real-world datasets by 2.3% on SWE-Bench Lite. Our results highlight the potential of synthetic, agent-generated data to advance the state of the art in APR and software engineering automation. [Submitted on 20 Apr 2025]

VLM as Policy: Common-Law Content Moderation Framework for Short Video Platform
Xingyu Lu, Tianke Zhang, Chang Meng, Xiaobei Wang, Jinpeng Wang, YiFan Zhang, Shisong Tang, Changyi Liu, Haojie Ding, Kaiyu Jiang, Kaiyu Tang, Bin Wen, Hai-Tao Zheng, Fan Yang, Tingting Gao, Di Zhang, Kun Gai
Exponentially growing short video platforms (SVPs) face significant challenges in moderating content detrimental to users' mental health, particularly for minors. The dissemination of such content on SVPs can lead to catastrophic societal consequences. Although substantial efforts have been dedicated to moderating such content, existing methods suffer from critical limitations: (1) Manual review is prone to human bias and incurs high operational costs. (2) Automated methods, though efficient, lack nuanced content understanding, resulting in lower accuracy. (3) Industrial moderation regulations struggle to adapt to rapidly evolving trends due to long update cycles. In this paper, we annotate the first SVP content moderation benchmark with authentic user/reviewer feedback to fill the absence of benchmark in this field. Then we evaluate various methods on the benchmark to verify the existence of the aforementioned limitations. We further propose our common-law content moderation framework named KuaiMod to address these challenges. KuaiMod consists of three components: training data construction, offline adaptation, and online deployment & refinement. Leveraging large vision language model (VLM) and Chain-of-Thought (CoT) reasoning, KuaiMod adequately models video toxicity based on sparse user feedback and fosters dynamic moderation policy with rapid update speed and high accuracy. Offline experiments and large-scale online A/B test demonstrates the superiority of KuaiMod: KuaiMod achieves the best moderation performance on our benchmark. The deployment of KuaiMod reduces the user reporting rate by 20% and its application in video recommendation increases both Daily Active User (DAU) and APP Usage Time (AUT) on several Kuaishou scenarios. We have open-sourced our benchmark at this https URL. [Submitted on 21 Apr 2025]

EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
Ziwen Xu, Shuxun Wang, Kewei Xu, Haoming Xu, Mengru Wang, Xinle Deng, Yunzhi Yao, Guozhou Zheng, Huajun Chen, Ningyu Zhang
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at this https URL along with a demonstration notebook. In addition, we provide a demo video at this https URL for a quick introduction. [Submitted on 21 Apr 2025]

SSFF: Investigating LLM Predictive Capabilities for Startup Success through a Multi-Agent Framework with Enhanced Explainability and Performance
Xisen Wang, Yigit Ihlamur, Fuat Alican
LLM based agents have recently demonstrated strong potential in automating complex tasks, yet accurately predicting startup success remains an open challenge with few benchmarks and tailored frameworks. To address these limitations, we propose the Startup Success Forecasting Framework, an autonomous system that emulates the reasoning of venture capital analysts through a multi agent collaboration model. Our framework integrates traditional machine learning methods such as random forests and neural networks within a retrieval augmented generation framework composed of three interconnected modules: a prediction block, an analysis block, and an external knowledge block. We evaluate our framework and identify three main findings. First, by leveraging founder segmentation, startups led by L5 founders are 3.79 times more likely to succeed than those led by L1 founders. Second, baseline large language models consistently overpredict startup success and struggle under realistic class imbalances largely due to overreliance on founder claims. Third, our framework significantly enhances prediction accuracy, yielding a 108.3 percent relative improvement over GPT 4o mini and a 30.8 percent relative improvement over GPT 4o. These results demonstrate the value of a multi agent approach combined with discriminative machine learning in mitigating the limitations of standard large language model based prediction methods. [Submitted on 29 May 2024 (v1), last revised 19 Apr 2025 (this version, v2)]

VACT: A Video Automatic Causal Testing System and a Benchmark
Haotong Yang, Qingyuan Zheng, Yunjian Gao, Yongkun Yang, Yangbo He, Zhouchen Lin, Muhan Zhang
With the rapid advancement of text-conditioned Video Generation Models (VGMs), the quality of generated videos has significantly improved, bringing these models closer to functioning as ``*world simulators*'' and making real-world-level video generation more accessible and cost-effective. However, the generated videos often contain factual inaccuracies and lack understanding of fundamental physical laws. While some previous studies have highlighted this issue in limited domains through manual analysis, a comprehensive solution has not yet been established, primarily due to the absence of a generalized, automated approach for modeling and assessing the causal reasoning of these models across diverse scenarios. To address this gap, we propose VACT: an **automated** framework for modeling, evaluating, and measuring the causal understanding of VGMs in real-world scenarios. By combining causal analysis techniques with a carefully designed large language model assistant, our system can assess the causal behavior of models in various contexts without human annotation, which offers strong generalization and scalability. Additionally, we introduce multi-level causal evaluation metrics to provide a detailed analysis of the causal performance of VGMs. As a demonstration, we use our framework to benchmark several prevailing VGMs, offering insight into their causal reasoning capabilities. Our work lays the foundation for systematically addressing the causal understanding deficiencies in VGMs and contributes to advancing their reliability and real-world applicability. [Submitted on 8 Mar 2025 (v1), last revised 20 Apr 2025 (this version, v2)]

MMKB-RAG: A Multi-Modal Knowledge-Based Retrieval-Augmented Generation Framework
Zihan Ling, Zhiyao Guo, Yixuan Huang, Yi An, Shuai Xiao, Jinsong Lan, Xiaoyong Zhu, Bo Zheng
Recent advancements in large language models (LLMs) and multi-modal LLMs have been remarkable. However, these models still rely solely on their parametric knowledge, which limits their ability to generate up-to-date information and increases the risk of producing erroneous content. Retrieval-Augmented Generation (RAG) partially mitigates these challenges by incorporating external data sources, yet the reliance on databases and retrieval systems can introduce irrelevant or inaccurate documents, ultimately undermining both performance and reasoning quality. In this paper, we propose Multi-Modal Knowledge-Based Retrieval-Augmented Generation (MMKB-RAG), a novel multi-modal RAG framework that leverages the inherent knowledge boundaries of models to dynamically generate semantic tags for the retrieval process. This strategy enables the joint filtering of retrieved documents, retaining only the most relevant and accurate references. Extensive experiments on knowledge-based visual question-answering tasks demonstrate the efficacy of our approach: on the E-VQA dataset, our method improves performance by +4.2% on the Single-Hop subset and +0.4% on the full dataset, while on the InfoSeek dataset, it achieves gains of +7.8% on the Unseen-Q subset, +8.2% on the Unseen-E subset, and +8.1% on the full dataset. These results highlight significant enhancements in both accuracy and robustness over the current state-of-the-art MLLM and RAG frameworks. [Submitted on 14 Apr 2025 (v1), last revised 20 Apr 2025 (this version, v3)]

Exploring Expert Failures Improves LLM Agent Tuning
Li-Cheng Lan, Andrew Bai, Minhao Cheng, Cho-Jui Hsieh, Tianyi Zhou
Large Language Models (LLMs) have shown tremendous potential as agents, excelling at tasks that require multiple rounds of reasoning and interactions. Rejection Sampling Fine-Tuning (RFT) has emerged as an effective method for finetuning LLMs as agents: it first imitates expert-generated successful trajectories and further improves agentic skills through iterative fine-tuning on successful, self-generated trajectories. However, since the expert (e.g., GPT-4) succeeds primarily on simpler subtasks and RFT inherently favors simpler scenarios, many complex subtasks remain unsolved and persistently out-of-distribution (OOD). Upon investigating these challenging subtasks, we discovered that previously failed expert trajectories can often provide valuable guidance, e.g., plans and key actions, that can significantly improve agent exploration efficiency and acquisition of critical skills. Motivated by these observations, we propose Exploring Expert Failures (EEF), which identifies beneficial actions from failed expert trajectories and integrates them into the training dataset. Potentially harmful actions are meticulously excluded to prevent contamination of the model learning process. By leveraging the beneficial actions in expert failures, EEF successfully solves some previously unsolvable subtasks and improves agent tuning performance. Remarkably, our approach achieved a 62\% win rate in WebShop, outperforming RFT (53. 6\%) and GPT-4 (35. 6\%), and to the best of our knowledge, setting a new state-of-the-art as the first method to surpass a score of 0.81 in WebShop and exceed 81 in SciWorld. [Submitted on 17 Apr 2025 (v1), last revised 18 Apr 2025 (this version, v2)]

GLoRE: Evaluating Logical Reasoning of Large Language Models
Hanmeng liu, Zhiyang Teng, Ruoxi Ning, Yiran Ding, Xiulai Li, Xiaozhang Liu, Yue Zhang
Large language models (LLMs) have shown significant general language understanding abilities. However, there has been a scarcity of attempts to assess the logical reasoning capacities of these LLMs, an essential facet of natural language understanding. To encourage further investigation in this area, we introduce GLoRE, a General Logical Reasoning Evaluation platform that not only consolidates diverse datasets but also standardizes them into a unified format suitable for evaluating large language models across zero-shot and few-shot scenarios. Our experimental results show that compared to the performance of humans and supervised fine-tuning models, the logical reasoning capabilities of large reasoning models, such as OpenAI's o1 mini, DeepSeek R1 and QwQ-32B, have seen remarkable improvements, with QwQ-32B achieving the highest benchmark performance to date. GLoRE is designed as a living project that continuously integrates new datasets and models, facilitating robust and comparative assessments of model performance in both commercial and Huggingface communities. [Submitted on 13 Oct 2023 (v1), last revised 20 Apr 2025 (this version, v2)]

LiveBench: A Challenging, Contamination-Limited LLM Benchmark
Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh Sandha, Siddartha Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie Neiswanger, Micah Goldblum
Test set contamination, wherein test data from a benchmark ends up in a newer model's training set, is a well-documented obstacle for fair LLM evaluation and can quickly render benchmarks obsolete. To mitigate this, many recent benchmarks crowdsource new prompts and evaluations from human or LLM judges; however, these can introduce significant biases, and break down when scoring hard questions. In this work, we introduce a new benchmark for LLMs designed to be resistant to both test set contamination and the pitfalls of LLM judging and human crowdsourcing. We release LiveBench, the first benchmark that (1) contains frequently-updated questions from recent information sources, (2) scores answers automatically according to objective ground-truth values, and (3) contains a wide variety of challenging tasks, spanning math, coding, reasoning, language, instruction following, and data analysis. To achieve this, LiveBench contains questions that are based on recently-released math competitions, arXiv papers, news articles, and datasets, and it contains harder, contamination-limited versions of tasks from previous benchmarks such as Big-Bench Hard, AMPS, and IFEval. We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 405B in size. LiveBench is difficult, with top models achieving below 70% accuracy. We release all questions, code, and model answers. Questions are added and updated on a monthly basis, and we release new tasks and harder versions of tasks over time so that LiveBench can distinguish between the capabilities of LLMs as they improve in the future. We welcome community engagement and collaboration for expanding the benchmark tasks and models. [Submitted on 27 Jun 2024 (v1), last revised 18 Apr 2025 (this version, v2)]

Seek and Solve Reasoning for Table Question Answering
Ruya Jiang, Chun Wang, Weihong Deng
The complexities of table structures and question logic make table-based question answering (TQA) tasks challenging for Large Language Models (LLMs), often requiring task simplification before solving. This paper reveals that the reasoning process during task simplification may be more valuable than the simplified tasks themselves and aims to improve TQA performance by leveraging LLMs' reasoning capabilities. We propose a Seek-and-Solve pipeline that instructs the LLM to first seek relevant information and then answer questions, integrating these two stages at the reasoning level into a coherent Seek-and-Solve Chain of Thought (SS-CoT). Additionally, we distill a single-step TQA-solving prompt from this pipeline, using demonstrations with SS-CoT paths to guide the LLM in solving complex TQA tasks under In-Context Learning settings. Our experiments show that our approaches result in improved performance and reliability while being efficient. Our findings emphasize the importance of eliciting LLMs' reasoning capabilities to handle complex TQA tasks effectively. [Submitted on 9 Sep 2024 (v1), last revised 20 Apr 2025 (this version, v3)]

Relevance-driven Decision Making for Safer and More Efficient Human Robot Collaboration
Xiaotong Zhang, Dingcheng Huang, Kamal Youcef-Toumi
Human brain possesses the ability to effectively focus on important environmental components, which enhances perception, learning, reasoning, and decision-making. Inspired by this cognitive mechanism, we introduced a novel concept termed relevance for Human-Robot Collaboration (HRC). Relevance is a dimensionality reduction process that incorporates a continuously operating perception module, evaluates cue sufficiency within the scene, and applies a flexible formulation and computation framework. In this paper, we present an enhanced two-loop framework that integrates real-time and asynchronous processing to quantify relevance and leverage it for safer and more efficient human-robot collaboration (HRC). The two-loop framework integrates an asynchronous loop, which leverages LLM world knowledge to quantify relevance, and a real-time loop, which performs scene understanding, human intent prediction, and decision-making based on relevance. HRC decision-making is enhanced by a relevance-based task allocation method, as well as a motion generation and collision avoidance approach that incorporates human trajectory prediction. Simulations and experiments show that our methodology for relevance quantification can accurately and robustly predict the human objective and relevance, with an average accuracy of up to 0.90 for objective prediction and up to 0.96 for relevance prediction. Moreover, our motion generation methodology reduces collision cases by 63.76% and collision frames by 44.74% when compared with a state-of-the-art (SOTA) collision avoidance method. Our framework and methodologies, with relevance, guide the robot on how to best assist humans and generate safer and more efficient actions for HRC. [Submitted on 21 Sep 2024 (v1), last revised 18 Apr 2025 (this version, v2)]

BlendRL: A Framework for Merging Symbolic and Neural Policy Learning
Hikaru Shindo, Quentin Delfosse, Devendra Singh Dhami, Kristian Kersting
Humans can leverage both symbolic reasoning and intuitive reactions. In contrast, reinforcement learning policies are typically encoded in either opaque systems like neural networks or symbolic systems that rely on predefined symbols and rules. This disjointed approach severely limits the agents' capabilities, as they often lack either the flexible low-level reaction characteristic of neural agents or the interpretable reasoning of symbolic agents. To overcome this challenge, we introduce BlendRL, a neuro-symbolic RL framework that harmoniously integrates both paradigms within RL agents that use mixtures of both logic and neural policies. We empirically demonstrate that BlendRL agents outperform both neural and symbolic baselines in standard Atari environments, and showcase their robustness to environmental changes. Additionally, we analyze the interaction between neural and symbolic policies, illustrating how their hybrid use helps agents overcome each other's limitations. [Submitted on 15 Oct 2024 (v1), last revised 21 Apr 2025 (this version, v2)]

ReSpAct: Harmonizing Reasoning, Speaking, and Acting Towards Building Large Language Model-Based Conversational AI Agents
Vardhan Dongre, Xiaocheng Yang, Emre Can Acikgoz, Suvodip Dey, Gokhan Tur, Dilek Hakkani-Tür
Large language model (LLM)-based agents are increasingly employed to interact with external environments (e.g., games, APIs, world models) to solve user-provided tasks. However, current frameworks often lack the ability to collaborate effectively with users in fully conversational settings. Conversations are essential for aligning on task details, achieving user-defined goals, and satisfying preferences. While existing agents address ambiguity through clarification questions, they underutilize the broader potential of an LLM's conversational capabilities. In this work, we introduce ReSpAct, an LLM-based agent designed to seamlessly integrate reasoning, decision-making, and dynamic dialogue for task-solving. Expanding on reasoning-first approaches like ReAct, ReSpAct employs active, free-flowing dialogues to interpret instructions, clarify goals, provide status updates, resolve subtask failures, and refine plans based on user inputs without any explicit dialogue schema. By alternating between task-solving actions and interactive conversations, ReSpAct demonstrates improved performance across diverse environments. We evaluate ReSpAct in user-interactive settings, including task-oriented dialogue systems (MultiWOZ) and decision-making tasks (ALFWorld, WebShop). ReSpAct outperforms ReAct with absolute success rate improvements of 6% and 4% in ALFWorld and WebShop, respectively, and achieves a 5.5% gain in Inform and a 3% gain in Success scores in MultiWOZ. These results highlight the value of integrating dynamic user-agent collaboration for more effective task resolution. [Submitted on 1 Nov 2024 (v1), last revised 19 Apr 2025 (this version, v2)]

Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters
Kevin Y. Li, Sachin Goyal, Joao D. Semedo, J. Zico Kolter
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks, driven by incorporating image representations into the token inputs of Large Language Models (LLMs). However, their real-world deployment is often constrained by high latency during inference due to the substantial compute required by the LLM to process the large number of input tokens, predominantly arising from the image. To reduce inference costs, one can either downsize the LLM or reduce the number of input tokens needed to represent the image, the latter of which has been the focus of many recent efforts around token compression. However, it is unclear what the optimal trade-off is given a fixed inference budget. We first characterize this optimal trade-off between the number of visual tokens and LLM parameters by establishing scaling laws that capture variations in performance with these two factors. Our results reveal a surprising trend: for visual reasoning tasks, the inference-optimal behavior in VLMs is achieved by using the largest LLM that fits within the inference budget while minimizing visual token count - often to a single token. While the token reduction literature has mainly focused on maintaining base model performance by modestly reducing the token count (e.g., $5-10\times$), our results indicate that the compute-optimal inference regime requires operating under even higher token compression ratios. Based on these insights, we take the first steps toward designing token compression algorithms tailored for high-compression settings, utilizing prompt-based compression of tokens. Our work underscores the performance and efficiency benefits of operating in low visual token regimes and the importance of developing tailored token reduction algorithms for such conditions. Code is available at this https URL. [Submitted on 5 Nov 2024 (v1), last revised 21 Apr 2025 (this version, v2)]

A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs
Mohit Vaishnav, Tanel Tammet
A fundamental challenge in artificial intelligence involves understanding the cognitive processes underlying visual reasoning in sophisticated models like Vision-Language Models (VLMs). How do these models integrate visual perception with abstract thought, especially when reasoning across multiple images? Drawing inspiration from cognitive science, this paper introduces a structured evaluation framework using Bongard Problems (BPs) - a classic test of visual abstraction to dissect the perception-reasoning interface in VLMs. We propose three distinct evaluation paradigms, mirroring human problem-solving strategies: Direct Visual Rule Learning (DVRL; holistic processing), Deductive Rule Learning (DRL; rule extraction and application), and Componential Analysis (CA; analytical decomposition via textual descriptions). These paradigms allow us to systematically vary the cognitive load and probe specific processing stages. Notably, the CA paradigm enables the evaluation of multi-image reasoning even in VLMs architecturally limited to single images and facilitates the isolation of reasoning capabilities from perceptual limitations by controlling the descriptive input. Ablation studies further confirm that reasoning abilities improve significantly when perceptual challenges are mitigated. Our framework provides a valuable diagnostic tool, highlighting the need to enhance visual processing fidelity for achieving more robust and human-like visual intelligence in AI. [Submitted on 23 Jan 2025 (v1), last revised 21 Apr 2025 (this version, v3)]

LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention
Shang Yang, Junxian Guo, Haotian Tang, Qinghao Hu, Guangxuan Xiao, Jiaming Tang, Yujun Lin, Zhijian Liu, Yao Lu, Song Han
Large language models (LLMs) have shown remarkable potential in processing long sequences and complex reasoning tasks, yet efficiently serving these models remains challenging due to the quadratic computational complexity of attention in the prefilling stage and the large memory footprint of the KV cache in the decoding stage. To address these issues, we introduce LServe, an efficient system that accelerates long-sequence LLM serving via hybrid sparse attention. This method unifies different hardware-friendly, structured sparsity patterns for both prefilling and decoding attention into a single framework, where computations on less important tokens are skipped block-wise. LServe demonstrates the compatibility of static and dynamic sparsity in long-context LLM attention. This design enables multiplicative speedups by combining these optimizations. Specifically, we convert half of the attention heads to nearly free streaming heads in both the prefilling and decoding stages. Additionally, we find that only a constant number of KV pages is required to preserve long-context and reasoning capabilities, irrespective of context length. We then design a hierarchical KV page selection policy that dynamically prunes KV pages based on query-centric similarity. On average, LServe accelerates LLM prefilling by up to 2.9x and decoding by 1.3-2.1x over vLLM, maintaining long-context accuracy. Code is released at this https URL. [Submitted on 20 Feb 2025 (v1), last revised 21 Apr 2025 (this version, v2)]

"The Diagram is like Guardrails": Structuring GenAI-assisted Hypotheses Exploration with an Interactive Shared Representation
Zijian Ding, Michelle Brachman, Joel Chan, Werner Geyer
Data analysis encompasses a spectrum of tasks, from high-level conceptual reasoning to lower-level execution. While AI-powered tools increasingly support execution tasks, there remains a need for intelligent assistance in conceptual tasks. This paper investigates the design of an ordered node-link tree interface augmented with AI-generated information hints and visualizations, as a potential shared representation for hypothesis exploration. Through a design probe (n=22), participants generated diagrams averaging 21.82 hypotheses. Our findings showed that the node-link diagram acts as "guardrails" for hypothesis exploration, facilitating structured workflows, providing comprehensive overviews, and enabling efficient backtracking. The AI-generated information hints, particularly visualizations, aided users in transforming abstract ideas into data-backed concepts while reducing cognitive load. We further discuss how node-link diagrams can support both parallel exploration and iterative refinement in hypothesis formulation, potentially enhancing the breadth and depth of human-AI collaborative data analysis. [Submitted on 21 Mar 2025 (v1), last revised 21 Apr 2025 (this version, v2)]

Reason2Attack: Jailbreaking Text-to-Image Models via LLM Reasoning
Chenyu Zhang, Lanjun Wang, Yiwen Ma, Wenhui Li, An-An Liu
Text-to-Image(T2I) models typically deploy safety filters to prevent the generation of sensitive images. Unfortunately, recent jailbreaking attack methods manually design prompts for the LLM to generate adversarial prompts, which effectively bypass safety filters while producing sensitive images, exposing safety vulnerabilities of T2I models. However, due to the LLM's limited understanding of the T2I model and its safety filters, existing methods require numerous queries to achieve a successful attack, limiting their practical applicability. To address this issue, we propose Reason2Attack(R2A), which aims to enhance the LLM's reasoning capabilities in generating adversarial prompts by incorporating the jailbreaking attack into the post-training process of the LLM. Specifically, we first propose a CoT example synthesis pipeline based on Frame Semantics, which generates adversarial prompts by identifying related terms and corresponding context illustrations. Using CoT examples generated by the pipeline, we fine-tune the LLM to understand the reasoning path and format the output structure. Subsequently, we incorporate the jailbreaking attack task into the reinforcement learning process of the LLM and design an attack process reward that considers prompt length, prompt stealthiness, and prompt effectiveness, aiming to further enhance reasoning accuracy. Extensive experiments on various T2I models show that R2A achieves a better attack success ratio while requiring fewer queries than baselines. Moreover, our adversarial prompts demonstrate strong attack transferability across both open-source and commercial T2I models. [Submitted on 23 Mar 2025 (v1), last revised 19 Apr 2025 (this version, v2)]

CHARMS: A Cognitive Hierarchical Agent for Reasoning and Motion Stylization in Autonomous Driving
Jingyi Wang, Duanfeng Chu, Zejian Deng, Liping Lu, Pan Zhou
To address the challenges of limited behavioral intelligence and overly simplified vehicle behavior modeling in autonomous driving simulations, this paper proposes the Cognitive Hierarchical Agent for Reasoning and Motion Stylization (CHARMS). Leveraging Level-k game theory, we model human driver decision-making using reinforcement learning pretraining and supervised fine-tuning. This enables the resulting models to exhibit diverse behaviors, improving the intelligence and realism of surrounding vehicles in simulation. Building upon this capability, we further develop a scenario generation framework that utilizes the Poisson cognitive hierarchy theory to control the distribution of vehicles with different driving styles through Poisson and binomial sampling. Experimental results demonstrate that CHARMS is capable of both making intelligent decisions as an ego vehicle and generating diverse, realistic driving scenarios as surrounding vehicles. The code for CHARMS will be released at this https URL. [Submitted on 3 Apr 2025 (v1), last revised 20 Apr 2025 (this version, v2)]

AI-Slop to AI-Polish? Aligning Language Models through Edit-Based Writing Rewards and Test-time Computation
Tuhin Chakrabarty, Philippe Laban, Chien-Sheng Wu
AI-generated text is proliferating across domains, from creative writing and journalism to marketing content and scientific articles. Models can follow user-provided instructions to generate coherent and grammatically correct outputs but in this work, we study a more fundamental question: how do we evaluate and improve the writing quality of AI-generated text? Writing quality assessment has received less attention from the community, in part because it is fundamentally subjective and requires expertise. We first introduce the Writing Quality Benchmark (WQ) by consolidating five writing-preference datasets into 4,729 writing quality judgments. Our experiments show that most of the competitive baselines, including state-of-the-art LLMs that excel at reasoning tasks, barely outperform random baselines on WQ. We then train specialized Writing Quality Reward Models (WQRM) of various sizes for writing quality assessment that demonstrate strong generalization on four out-of-distribution test sets and 74% accuracy on the WQ benchmark. To further show WQRM's practical benefits during inference, we leverage additional test-time compute to generate and rank multiple candidate revisions, allowing us to select higher-quality outputs from an initial draft. Human evaluation with 9 experienced writers confirm that WQRM-based selection produces writing samples preferred by experts 66% overall, and 72.2% when the reward gap is larger than 1 point. We release our datasets and models to encourage community engagement with writing quality assessment and development of AI writing systems better aligned with human preferences. [Submitted on 10 Apr 2025 (v1), last revised 20 Apr 2025 (this version, v2)]

Fine-tuning a Large Language Model for Automating Computational Fluid Dynamics Simulations
Zhehao Dong, Zhen Lu, Yue Yang
Configuring computational fluid dynamics (CFD) simulations typically demands extensive domain expertise, limiting broader access. Although large language models (LLMs) have advanced scientific computing, their use in automating CFD workflows is underdeveloped. We introduce a novel approach centered on domain-specific LLM adaptation. By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM, our custom dataset of 28716 natural language-to-OpenFOAM configuration pairs with chain-of-thought (CoT) annotations, we enable direct translation from natural language descriptions to executable CFD setups. A multi-agent framework orchestrates the process, autonomously verifying inputs, generating configurations, running simulations, and correcting errors. Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance, achieving 88.7% solution accuracy and 82.6% first-attempt success rate. This significantly outperforms larger general-purpose models like Qwen2.5-72B-Instruct, DeepSeek-R1, and Llama3.3-70B-Instruct, while also requiring fewer correction iterations and maintaining high computational efficiency. The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows. Our code and fine-tuned model have been deposited at this https URL. [Submitted on 13 Apr 2025 (v1), last revised 21 Apr 2025 (this version, v2)]

Understanding and Optimizing Multi-Stage AI Inference Pipelines
Abhimanyu Rajeshkumar Bambhaniya, Hanjiang Wu, Suvinay Subramanian, Sudarshan Srinivasan, Souvik Kundu, Amir Yazdanbakhsh, Midhilesh Elavazhagan, Madhu Kumar, Tushar Krishna
The rapid evolution of Large Language Models (LLMs) has driven the need for increasingly sophisticated inference pipelines and hardware platforms. Modern LLM serving extends beyond traditional prefill-decode workflows, incorporating multi-stage processes such as Retrieval Augmented Generation (RAG), key-value (KV) cache retrieval, dynamic model routing, and multi step reasoning. These stages exhibit diverse computational demands, requiring distributed systems that integrate GPUs, ASICs, CPUs, and memory-centric architectures. However, existing simulators lack the fidelity to model these heterogeneous, multi-engine workflows, limiting their ability to inform architectural decisions. To address this gap, we introduce HERMES, a Heterogeneous Multi-stage LLM inference Execution Simulator. HERMES models diverse request stages; including RAG, KV retrieval, reasoning, prefill, and decode across complex hardware hierarchies. HERMES supports heterogeneous clients executing multiple models concurrently unlike prior frameworks while incorporating advanced batching strategies and multi-level memory hierarchies. By integrating real hardware traces with analytical modeling, HERMES captures critical trade-offs such as memory bandwidth contention, inter-cluster communication latency, and batching efficiency in hybrid CPU-accelerator deployments. Through case studies, we explore the impact of reasoning stages on end-to-end latency, optimal batching strategies for hybrid pipelines, and the architectural implications of remote KV cache retrieval. HERMES empowers system designers to navigate the evolving landscape of LLM inference, providing actionable insights into optimizing hardware-software co-design for next-generation AI workloads. [Submitted on 14 Apr 2025 (v1), last revised 20 Apr 2025 (this version, v3)]

LangCoop: Collaborative Driving with Language
Xiangbo Gao, Yuheng Wu, Rujia Wang, Chenxi Liu, Yang Zhou, Zhengzhong Tu
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation. Our project page and code are at this https URL. [Submitted on 18 Apr 2025 (v1), last revised 21 Apr 2025 (this version, v2)]

Generative AI Act II: Test Time Scaling Drives Cognition Engineering
Shijie Xia, Yiwei Qin, Xuefeng Li, Yan Ma, Run-Ze Fan, Steffi Chern, Haoyang Zou, Fan Zhou, Xiangkun Hu, Jiahe Jin, Yanheng He, Yixin Ye, Yixiu Liu, Pengfei Liu
The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations such as knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: this https URL [Submitted on 18 Apr 2025 (v1), last revised 21 Apr 2025 (this version, v2)]

NLG
AlignRAG: An Adaptable Framework for Resolving Misalignments in Retrieval-Aware Reasoning of RAG

Jiaqi Wei, Hao Zhou, Xiang Zhang, Di Zhang, Zijie Qiu, Wei Wei, Jinzhe Li, Wanli Ouyang, Siqi Sun
Retrieval-augmented generation (RAG) has emerged as a foundational paradigm for knowledge-grounded text generation. However, existing RAG pipelines often fail to ensure that the reasoning trajectories align with the evidential constraints imposed by retrieved content. In this paper, we reframe RAG as a problem of retrieval-aware reasoning and identify a core challenge: reasoning misalignment-the mismatch between a model's reasoning trajectory and the retrieved evidence. To address this challenge, we propose AlignRAG, a novel test-time framework that mitigates reasoning misalignment through iterative Critique-Driven Alignment (CDA) steps. In contrast to prior approaches that rely on static training or post-hoc selection, AlignRAG actively refines reasoning trajectories during inference by enforcing fine-grained alignment with evidence. Our framework introduces a new paradigm for retrieval-aware reasoning by: (1) constructing context-rich training corpora; (2) generating contrastive critiques from preference-aware reasoning trajectories; (3) training a dedicated \textit{Critic Language Model (CLM)} to identify reasoning misalignments; and (4) applying CDA steps to optimize reasoning trajectories iteratively. Empirical results demonstrate that AlignRAG consistently outperforms all baselines and could integrate as a plug-and-play module into existing RAG pipelines without further changes. By reconceptualizing RAG as a structured reasoning trajectory and establishing the test-time framework for correcting reasoning misalignments in RAG, AlignRAG provides practical advancements for retrieval-aware generation. [Submitted on 21 Apr 2025]

FarsEval-PKBETS: A new diverse benchmark for evaluating Persian large language models

Mehrnoush Shamsfard, Zahra Saaberi, Mostafa Karimi manesh, Seyed Mohammad Hossein Hashemi, Zahra Vatankhah, Motahareh Ramezani, Niki Pourazin, Tara Zare, Maryam Azimi, Sarina Chitsaz, Sama Khoraminejad, Morteza Mahdavi Mortazavi, Mohammad Mahdi Chizari, Sahar Maleki, Seyed Soroush Majd, Mostafa Masumi, Sayed Ali Musavi Khoeini, Amir Mohseni, Sogol Alipour
Research on evaluating and analyzing large language models (LLMs) has been extensive for resource-rich languages such as English, yet their performance in languages such as Persian has received considerably less attention. This paper introduces FarsEval-PKBETS benchmark, a subset of FarsEval project for evaluating large language models in Persian. This benchmark consists of 4000 questions and answers in various formats, including multiple choice, short answer and descriptive responses. It covers a wide range of domains and tasks,including medicine, law, religion, Persian language, encyclopedic knowledge, human preferences, social knowledge, ethics and bias, text generation, and respecting others' rights. This bechmark incorporates linguistics, cultural, and local considerations relevant to the Persian language and Iran. To ensure the questions are challenging for current LLMs, three models -- Llama3-70B, PersianMind, and Dorna -- were evaluated using this benchmark. Their average accuracy was below 50%, meaning they provided fully correct answers to fewer than half of the questions. These results indicate that current language models are still far from being able to solve this benchmark [Submitted on 20 Apr 2025]

Exploring the Frontiers of LLMs in Psychological Applications: A Comprehensive Review

Luoma Ke (1), Song Tong (1), Peng Cheng (2), Kaiping Peng (1) ((1) Department of Psychological and Cognitive Sciences, Tsinghua University, (2) School of Social Science, Tsinghua University)
This paper explores the frontiers of large language models (LLMs) in psychology applications. Psychology has undergone several theoretical changes, and the current use of Artificial Intelligence (AI) and Machine Learning, particularly LLMs, promises to open up new research directions. We provide a detailed exploration of how LLMs like ChatGPT are transforming psychological research. It discusses the impact of LLMs across various branches of psychology, including cognitive and behavioral, clinical and counseling, educational and developmental, and social and cultural psychology, highlighting their potential to simulate aspects of human cognition and behavior. The paper delves into the capabilities of these models to emulate human-like text generation, offering innovative tools for literature review, hypothesis generation, experimental design, experimental subjects, data analysis, academic writing, and peer review in psychology. While LLMs are essential in advancing research methodologies in psychology, the paper also cautions about their technical and ethical challenges. There are issues like data privacy, the ethical implications of using LLMs in psychological research, and the need for a deeper understanding of these models' limitations. Researchers should responsibly use LLMs in psychological studies, adhering to ethical standards and considering the potential consequences of deploying these technologies in sensitive areas. Overall, the article provides a comprehensive overview of the current state of LLMs in psychology, exploring potential benefits and challenges. It serves as a call to action for researchers to leverage LLMs' advantages responsibly while addressing associated risks. [Submitted on 3 Jan 2024 (v1), last revised 20 Apr 2025 (this version, v4)]

MedUnifier: Unifying Vision-and-Language Pre-training on Medical Data with Vision Generation Task using Discrete Visual Representations

Ziyang Zhang, Yang Yu, Yucheng Chen, Xulei Yang, Si Yong Yeo
Despite significant progress in Vision-Language Pre-training (VLP), current approaches predominantly emphasize feature extraction and cross-modal comprehension, with limited attention to generating or transforming visual content. This gap hinders the model's ability to synthesize coherent and novel visual representations from textual prompts, thereby reducing the effectiveness of multi-modal learning. In this work, we propose MedUnifier, a unified VLP framework tailored for medical data. MedUnifier seamlessly integrates text-grounded image generation capabilities with multi-modal learning strategies, including image-text contrastive alignment, image-text matching and image-grounded text generation. Unlike traditional methods that reply on continuous visual representations, our approach employs visual vector quantization, which not only facilitates a more cohesive learning strategy for cross-modal understanding but also enhances multi-modal generation quality by effectively leveraging discrete representations. Our framework's effectiveness is evidenced by the experiments on established benchmarks, including uni-modal tasks (supervised fine-tuning), cross-modal tasks (image-text retrieval and zero-shot image classification), and multi-modal tasks (medical report generation, image synthesis), where it achieves state-of-the-art performance across various tasks. MedUnifier also offers a highly adaptable tool for a wide range of language and vision tasks in healthcare, marking advancement toward the development of a generalizable AI model for medical applications. [Submitted on 2 Mar 2025 (v1), last revised 20 Apr 2025 (this version, v3)]

Multimodal
Adaptation Method for Misinformation Identification
Yangping Chen, Weijie Shi, Mengze Li, Yue Cui, Hao Chen, Jia Zhu, Jiajie Xu
Multimodal fake news detection plays a crucial role in combating online misinformation. Unfortunately, effective detection methods rely on annotated labels and encounter significant performance degradation when domain shifts exist between training (source) and test (target) data. To address the problems, we propose ADOSE, an Active Domain Adaptation (ADA) framework for multimodal fake news detection which actively annotates a small subset of target samples to improve detection performance. To identify various deceptive patterns in cross-domain settings, we design multiple expert classifiers to learn dependencies across different modalities. These classifiers specifically target the distinct deception patterns exhibited in fake news, where two unimodal classifiers capture knowledge errors within individual modalities while one cross-modal classifier identifies semantic inconsistencies between text and images. To reduce annotation costs from the target domain, we propose a least-disagree uncertainty selector with a diversity calculator for selecting the most informative samples. The selector leverages prediction disagreement before and after perturbations by multiple classifiers as an indicator of uncertain samples, whose deceptive patterns deviate most from source domains. It further incorporates diversity scores derived from multi-view features to ensure the chosen samples achieve maximal coverage of target domain features. The extensive experiments on multiple datasets show that ADOSE outperforms existing ADA methods by 2.72\% $\sim$ 14.02\%, indicating the superiority of our model. [Submitted on 19 Apr 2025]

InfiGUI-R1: Advancing Multimodal GUI Agents from Reactive Actors to Deliberative Reasoners
Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang, Fei Wu
Multimodal Large Language Models (MLLMs) have powered Graphical User Interface (GUI) Agents, showing promise in automating tasks on computing devices. Recent works have begun exploring reasoning in GUI tasks with encouraging results. However, many current approaches rely on manually designed reasoning templates, which may result in reasoning that is not sufficiently robust and adaptive for complex GUI environments. Meanwhile, some existing agents continue to operate as Reactive Actors, relying primarily on implicit reasoning that may lack sufficient depth for GUI tasks demanding planning and error recovery. We argue that advancing these agents requires a shift from reactive acting towards acting based on deliberate reasoning. To facilitate this transformation, we introduce InfiGUI-R1, an MLLM-based GUI agent developed through our Actor2Reasoner framework, a reasoning-centric, two-stage training approach designed to progressively evolve agents from Reactive Actors to Deliberative Reasoners. The first stage, Reasoning Injection, focuses on establishing a basic reasoner. We employ Spatial Reasoning Distillation to transfer cross-modal spatial reasoning capabilities from teacher models to MLLMs through trajectories with explicit reasoning steps, enabling models to integrate GUI visual-spatial information with logical reasoning before action generation. The second stage, Deliberation Enhancement, refines the basic reasoner into a deliberative one using Reinforcement Learning. This stage introduces two approaches: Sub-goal Guidance, which rewards models for generating accurate intermediate sub-goals, and Error Recovery Scenario Construction, which creates failure-and-recovery training scenarios from identified prone-to-error steps. Experimental results show InfiGUI-R1 achieves strong performance in GUI grounding and trajectory tasks. Resources at this https URL. [Submitted on 19 Apr 2025]

Learning from Reasoning Failures via Synthetic Data Generation
Gabriela Ben Melech Stan, Estelle Aflalo, Avinash Madasu, Vasudev Lal, Phillip Howard
Training models on synthetic data has emerged as an increasingly important strategy for improving the performance of generative AI. This approach is particularly helpful for large multimodal models (LMMs) due to the relative scarcity of high-quality paired image-text data compared to language-only data. While a variety of methods have been proposed for generating large multimodal datasets, they do not tailor the synthetic data to address specific deficiencies in the reasoning abilities of LMMs which will be trained with the generated dataset. In contrast, humans often learn in a more efficient manner by seeking out examples related to the types of reasoning where they have failed previously. Inspired by this observation, we propose a new approach for synthetic data generation which is grounded in the analysis of an existing LMM's reasoning failures. Our methodology leverages frontier models to automatically analyze errors produced by a weaker LMM and propose new examples which can be used to correct the reasoning failure via additional training, which are then further filtered to ensure high quality. We generate a large multimodal instruction tuning dataset containing over 553k examples using our approach and conduct extensive experiments demonstrating its utility for improving the performance of LMMs on multiple downstream tasks. Our results show that models trained on our synthetic data can even exceed the performance of LMMs trained on an equivalent amount of additional real data, demonstrating the high value of generating synthetic data targeted to specific reasoning failure modes in LMMs. We will make our dataset and code publicly available. [Submitted on 20 Apr 2025]

UFO2: The Desktop AgentOS
Chaoyun Zhang, He Huang, Chiming Ni, Jian Mu, Si Qin, Shilin He, Lu Wang, Fangkai Yang, Pu Zhao, Chao Du, Liqun Li, Yu Kang, Zhao Jiang, Suzhen Zheng, Rujia Wang, Jiaxu Qian, Minghua Ma, Jian-Guang Lou, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang
Recent Computer-Using Agents (CUAs), powered by multimodal large language models (LLMs), offer a promising direction for automating complex desktop workflows through natural language. However, most existing CUAs remain conceptual prototypes, hindered by shallow OS integration, fragile screenshot-based interaction, and disruptive execution. We present UFO2, a multiagent AgentOS for Windows desktops that elevates CUAs into practical, system-level automation. UFO2 features a centralized HostAgent for task decomposition and coordination, alongside a collection of application-specialized AppAgent equipped with native APIs, domain-specific knowledge, and a unified GUI--API action layer. This architecture enables robust task execution while preserving modularity and extensibility. A hybrid control detection pipeline fuses Windows UI Automation (UIA) with vision-based parsing to support diverse interface styles. Runtime efficiency is further enhanced through speculative multi-action planning, reducing per-step LLM overhead. Finally, a Picture-in-Picture (PiP) interface enables automation within an isolated virtual desktop, allowing agents and users to operate concurrently without interference. We evaluate UFO2 across over 20 real-world Windows applications, demonstrating substantial improvements in robustness and execution accuracy over prior CUAs. Our results show that deep OS integration unlocks a scalable path toward reliable, user-aligned desktop automation. [Submitted on 20 Apr 2025]

A Survey on (M)LLM-Based GUI Agents
Fei Tang, Haolei Xu, Hang Zhang, Siqi Chen, Xingyu Wu, Yongliang Shen, Wenqi Zhang, Guiyang Hou, Zeqi Tan, Yuchen Yan, Kaitao Song, Jian Shao, Weiming Lu, Jun Xiao, Yueting Zhuang
Graphical User Interface (GUI) Agents have emerged as a transformative paradigm in human-computer interaction, evolving from rule-based automation scripts to sophisticated AI-driven systems capable of understanding and executing complex interface operations. This survey provides a comprehensive examination of the rapidly advancing field of LLM-based GUI Agents, systematically analyzing their architectural foundations, technical components, and evaluation methodologies. We identify and analyze four fundamental components that constitute modern GUI Agents: (1) perception systems that integrate text-based parsing with multimodal understanding for comprehensive interface comprehension; (2) exploration mechanisms that construct and maintain knowledge bases through internal modeling, historical experience, and external information retrieval; (3) planning frameworks that leverage advanced reasoning methodologies for task decomposition and execution; and (4) interaction systems that manage action generation with robust safety controls. Through rigorous analysis of these components, we reveal how recent advances in large language models and multimodal learning have revolutionized GUI automation across desktop, mobile, and web platforms. We critically examine current evaluation frameworks, highlighting methodological limitations in existing benchmarks while proposing directions for standardization. This survey also identifies key technical challenges, including accurate element localization, effective knowledge retrieval, long-horizon planning, and safety-aware execution control, while outlining promising research directions for enhancing GUI Agents' capabilities. Our systematic review provides researchers and practitioners with a thorough understanding of the field's current state and offers insights into future developments in intelligent interface automation. [Submitted on 27 Mar 2025]

Towards a Multimodal Document-grounded Conversational AI System for Education
Karan Taneja, Anjali Singh, Ashok K. Goel
Multimedia learning using text and images has been shown to improve learning outcomes compared to text-only instruction. But conversational AI systems in education predominantly rely on text-based interactions while multimodal conversations for multimedia learning remain unexplored. Moreover, deploying conversational AI in learning contexts requires grounding in reliable sources and verifiability to create trust. We present MuDoC, a Multimodal Document-grounded Conversational AI system based on GPT-4o, that leverages both text and visuals from documents to generate responses interleaved with text and images. Its interface allows verification of AI generated content through seamless navigation to the source. We compare MuDoC to a text-only system to explore differences in learner engagement, trust in AI system, and their performance on problem-solving tasks. Our findings indicate that both visuals and verifiability of content enhance learner engagement and foster trust; however, no significant impact in performance was observed. We draw upon theories from cognitive and learning sciences to interpret the findings and derive implications, and outline future directions for the development of multimodal conversational AI systems in education. [Submitted on 4 Apr 2025]

Mozualization: Crafting Music and Visual Representation with Multimodal AI
Wanfang Xu, Lixiang Zhao, Haiwen Song, Xinheng Song, Zhaolin Lu, Yu Liu, Min Chen, Eng Gee Lim, Lingyun Yu
In this work, we introduce Mozualization, a music generation and editing tool that creates multi-style embedded music by integrating diverse inputs, such as keywords, images, and sound clips (e.g., segments from various pieces of music or even a playful cat's meow). Our work is inspired by the ways people express their emotions -- writing mood-descriptive poems or articles, creating drawings with warm or cool tones, or listening to sad or uplifting music. Building on this concept, we developed a tool that transforms these emotional expressions into a cohesive and expressive song, allowing users to seamlessly incorporate their unique preferences and inspirations. To evaluate the tool and, more importantly, gather insights for its improvement, we conducted a user study involving nine music enthusiasts. The study assessed user experience, engagement, and the impact of interacting with and listening to the generated music. [Submitted on 5 Apr 2025]

The Future of Internet of Things and Multimodal Language Models in 6G Networks: Opportunities and Challenges
Abdelrahman Soliman
Based on recent trends in artificial intelligence and IoT research. The cooperative potential of integrating the Internet of Things (IoT) and Multimodal Language Models (MLLMs) is presented in this survey paper for future 6G systems. It focuses on the applications of this integration in different fields, such as healthcare, agriculture, and smart cities, and investigates the four pillars of IoT integration, such as sensors, communication, processing, and security. The paper provides a comprehensive description of IoT and MLLM technologies and applications, addresses the role of multimodality in each pillar, and concludes with an overview of the most significant challenges and directions for future research. The general survey is a roadmap for researchers interested in tracing the application areas of MLLMs and IoT, highlighting the potential and challenges in this rapidly growing field. The survey recognizes the need to deal with data availability, computational expense, privacy, and real-time processing to harness the complete potential of IoT, MLLM, and 6G technology [Submitted on 17 Apr 2025]

Fashion-RAG: Multimodal Fashion Image Editing via Retrieval-Augmented Generation
Fulvio Sanguigni, Davide Morelli, Marcella Cornia, Rita Cucchiara
In recent years, the fashion industry has increasingly adopted AI technologies to enhance customer experience, driven by the proliferation of e-commerce platforms and virtual applications. Among the various tasks, virtual try-on and multimodal fashion image editing -- which utilizes diverse input modalities such as text, garment sketches, and body poses -- have become a key area of research. Diffusion models have emerged as a leading approach for such generative tasks, offering superior image quality and diversity. However, most existing virtual try-on methods rely on having a specific garment input, which is often impractical in real-world scenarios where users may only provide textual specifications. To address this limitation, in this work we introduce Fashion Retrieval-Augmented Generation (Fashion-RAG), a novel method that enables the customization of fashion items based on user preferences provided in textual form. Our approach retrieves multiple garments that match the input specifications and generates a personalized image by incorporating attributes from the retrieved items. To achieve this, we employ textual inversion techniques, where retrieved garment images are projected into the textual embedding space of the Stable Diffusion text encoder, allowing seamless integration of retrieved elements into the generative process. Experimental results on the Dress Code dataset demonstrate that Fashion-RAG outperforms existing methods both qualitatively and quantitatively, effectively capturing fine-grained visual details from retrieved garments. To the best of our knowledge, this is the first work to introduce a retrieval-augmented generation approach specifically tailored for multimodal fashion image editing. [Submitted on 18 Apr 2025]

PipeWeaver: Addressing Data Dynamicity in Large Multimodal Model Training with Dynamic Interleaved Pipeline
Zhenliang Xue, Hanpeng Hu, Xing Chen, Yimin Jiang, Yixin Song, Zeyu Mi, Yibo Zhu, Daxin Jiang, Yubin Xia, Haibo Chen
Large multimodal models (LMMs) have demonstrated excellent capabilities in both understanding and generation tasks with various modalities. While these models can accept flexible combinations of input data, their training efficiency suffers from two major issues: pipeline stage imbalance caused by heterogeneous model architectures, and training data dynamicity stemming from the diversity of multimodal data. In this paper, we present PipeWeaver, a dynamic pipeline scheduling framework designed for LMM training. The core of PipeWeaver is dynamic interleaved pipeline, which searches for pipeline schedules dynamically tailored to current training batches. PipeWeaver addresses issues of LMM training with two techniques: adaptive modality-aware partitioning and efficient pipeline schedule search within a hierarchical schedule space. Meanwhile, PipeWeaver utilizes SEMU (Step Emulator), a training simulator for multimodal models, for accurate performance estimations, accelerated by spatial-temporal subgraph reuse to improve search efficiency. Experiments show that PipeWeaver can enhance LMM training efficiency by up to 97.3% compared to state-of-the-art systems, and demonstrate excellent adaptivity to LMM training's data dynamicity. [Submitted on 19 Apr 2025]

A Physics-guided Multimodal Transformer Path to Weather and Climate Sciences
Jing Han, Hanting Chen, Kai Han, Xiaomeng Huang, Yongyun Hu, Wenjun Xu, Dacheng Tao, Ping Zhang
With the rapid development of machine learning in recent years, many problems in meteorology can now be addressed using AI models. In particular, data-driven algorithms have significantly improved accuracy compared to traditional methods. Meteorological data is often transformed into 2D images or 3D videos, which are then fed into AI models for learning. Additionally, these models often incorporate physical signals, such as temperature, pressure, and wind speed, to further enhance accuracy and interpretability. In this paper, we review several representative AI + Weather/Climate algorithms and propose a new paradigm where observational data from different perspectives, each with distinct physical meanings, are treated as multimodal data and integrated via transformers. Furthermore, key weather and climate knowledge can be incorporated through regularization techniques to further strengthen the model's capabilities. This new paradigm is versatile and can address a variety of tasks, offering strong generalizability. We also discuss future directions for improving model accuracy and interpretability. [Submitted on 19 Apr 2025]

Enhancing Multimodal In-Context Learning for Image Classification through Coreset Optimization
Huiyi Chen, Jiawei Peng, Kaihua Tang, Xin Geng, Xu Yang
In-context learning (ICL) enables Large Vision-Language Models (LVLMs) to adapt to new tasks without parameter updates, using a few demonstrations from a large support set. However, selecting informative demonstrations leads to high computational and memory costs. While some methods explore selecting a small and representative coreset in the text classification, evaluating all support set samples remains costly, and discarded samples lead to unnecessary information loss. These methods may also be less effective for image classification due to differences in feature spaces. Given these limitations, we propose Key-based Coreset Optimization (KeCO), a novel framework that leverages untapped data to construct a compact and informative coreset. We introduce visual features as keys within the coreset, which serve as the anchor for identifying samples to be updated through different selection strategies. By leveraging untapped samples from the support set, we update the keys of selected coreset samples, enabling the randomly initialized coreset to evolve into a more informative coreset under low computational cost. Through extensive experiments on coarse-grained and fine-grained image classification benchmarks, we demonstrate that KeCO effectively enhances ICL performance for image classification task, achieving an average improvement of more than 20\%. Notably, we evaluate KeCO under a simulated online scenario, and the strong performance in this scenario highlights the practical value of our framework for resource-constrained real-world scenarios. [Submitted on 19 Apr 2025]

Learning Joint ID-Textual Representation for ID-Preserving Image Synthesis
Zichuan Liu, Liming Jiang, Qing Yan, Yumin Jia, Hao Kang, Xin Lu
We propose a novel framework for ID-preserving generation using a multi-modal encoding strategy rather than injecting identity features via adapters into pre-trained models. Our method treats identity and text as a unified conditioning input. To achieve this, we introduce FaceCLIP, a multi-modal encoder that learns a joint embedding space for both identity and textual semantics. Given a reference face and a text prompt, FaceCLIP produces a unified representation that encodes both identity and text, which conditions a base diffusion model to generate images that are identity-consistent and text-aligned. We also present a multi-modal alignment algorithm to train FaceCLIP, using a loss that aligns its joint representation with face, text, and image embedding spaces. We then build FaceCLIP-SDXL, an ID-preserving image synthesis pipeline by integrating FaceCLIP with Stable Diffusion XL (SDXL). Compared to prior methods, FaceCLIP-SDXL enables photorealistic portrait generation with better identity preservation and textual relevance. Extensive experiments demonstrate its quantitative and qualitative superiority. [Submitted on 19 Apr 2025]

A Multimodal Recaptioning Framework to Account for Perceptual Diversity in Multilingual Vision-Language Modeling
Kyle Buettner, Jacob Emmerson, Adriana Kovashka
There are many ways to describe, name, and group objects when captioning an image. Differences are evident when speakers come from diverse cultures due to the unique experiences that shape perception. Machine translation of captions has pushed multilingual capabilities in vision-language models (VLMs), but data comes mainly from English speakers, indicating a perceptual bias and lack of model flexibility. In this work, we address this challenge and outline a data-efficient framework to instill multilingual VLMs with greater understanding of perceptual diversity. We specifically propose an LLM-based, multimodal recaptioning strategy that alters the object descriptions of English captions before translation. The greatest benefits are demonstrated in a targeted multimodal mechanism guided by native speaker data. By adding produced rewrites as augmentations in training, we improve on German and Japanese text-image retrieval cases studies (up to +3.5 mean recall overall, +4.7 on non-native error cases). We further propose a mechanism to analyze the specific object description differences across datasets, and we offer insights into cross-dataset and cross-language generalization. [Submitted on 19 Apr 2025]

Adversarial Attack for RGB-Event based Visual Object Tracking
Qiang Chen, Xiao Wang, Haowen Wang, Bo Jiang, Lin Zhu, Dawei Zhang, Yonghong Tian, Jin Tang
Visual object tracking is a crucial research topic in the fields of computer vision and multi-modal fusion. Among various approaches, robust visual tracking that combines RGB frames with Event streams has attracted increasing attention from researchers. While striving for high accuracy and efficiency in tracking, it is also important to explore how to effectively conduct adversarial attacks and defenses on RGB-Event stream tracking algorithms, yet research in this area remains relatively scarce. To bridge this gap, in this paper, we propose a cross-modal adversarial attack algorithm for RGB-Event visual tracking. Because of the diverse representations of Event streams, and given that Event voxels and frames are more commonly used, this paper will focus on these two representations for an in-depth study. Specifically, for the RGB-Event voxel, we first optimize the perturbation by adversarial loss to generate RGB frame adversarial examples. For discrete Event voxel representations, we propose a two-step attack strategy, more in detail, we first inject Event voxels into the target region as initialized adversarial examples, then, conduct a gradient-guided optimization by perturbing the spatial location of the Event voxels. For the RGB-Event frame based tracking, we optimize the cross-modal universal perturbation by integrating the gradient information from multimodal data. We evaluate the proposed approach against attacks on three widely used RGB-Event Tracking datasets, i.e., COESOT, FE108, and VisEvent. Extensive experiments show that our method significantly reduces the performance of the tracker across numerous datasets in both unimodal and multimodal scenarios. The source code will be released on this https URL [Submitted on 19 Apr 2025]

Optimizing SIA Development: A Case Study in User-Centered Design for Estuary, a Multimodal Socially Interactive Agent Framework
Spencer Lin, Miru Jun, Basem Rizk, Karen Shieh, Scott Fisher, Sharon Mozgai
This case study presents our user-centered design model for Socially Intelligent Agent (SIA) development frameworks through our experience developing Estuary, an open source multimodal framework for building low-latency real-time socially interactive agents. We leverage the Rapid Assessment Process (RAP) to collect the thoughts of leading researchers in the field of SIAs regarding the current state of the art for SIA development as well as their evaluation of how well Estuary may potentially address current research gaps. We achieve this through a series of end-user interviews conducted by a fellow researcher in the community. We hope that the findings of our work will not only assist the continued development of Estuary but also guide the development of other future frameworks and technologies for SIAs. [Submitted on 20 Apr 2025]

ResNetVLLM-2: Addressing ResNetVLLM's Multi-Modal Hallucinations
Ahmad Khalil, Mahmoud Khalil, Alioune Ngom
Large Language Models (LLMs) have transformed natural language processing (NLP) tasks, but they suffer from hallucination, generating plausible yet factually incorrect content. This issue extends to Video-Language Models (VideoLLMs), where textual descriptions may inaccurately represent visual content, resulting in multi-modal hallucinations. In this paper, we address hallucination in ResNetVLLM, a video-language model combining ResNet visual encoders with LLMs. We introduce a two-step protocol: (1) a faithfulness detection strategy that uses a modified Lynx model to assess semantic alignment between generated captions and ground-truth video references, and (2) a hallucination mitigation strategy using Retrieval-Augmented Generation (RAG) with an ad-hoc knowledge base dynamically constructed during inference. Our enhanced model, ResNetVLLM-2, reduces multi-modal hallucinations by cross-verifying generated content against external knowledge, improving factual consistency. Evaluation on the ActivityNet-QA benchmark demonstrates a substantial accuracy increase from 54.8% to 65.3%, highlighting the effectiveness of our hallucination detection and mitigation strategies in enhancing video-language model reliability. [Submitted on 20 Apr 2025]

ResNetVLLM -- Multi-modal Vision LLM for the Video Understanding Task
Ahmad Khalil, Mahmoud Khalil, Alioune Ngom
In this paper, we introduce ResNetVLLM (ResNet Vision LLM), a novel cross-modal framework for zero-shot video understanding that integrates a ResNet-based visual encoder with a Large Language Model (LLM. ResNetVLLM addresses the challenges associated with zero-shot video models by avoiding reliance on pre-trained video understanding models and instead employing a non-pretrained ResNet to extract visual features. This design ensures the model learns visual and semantic representations within a unified architecture, enhancing its ability to generate accurate and contextually relevant textual descriptions from video inputs. Our experimental results demonstrate that ResNetVLLM achieves state-of-the-art performance in zero-shot video understanding (ZSVU) on several benchmarks, including MSRVTT-QA, MSVD-QA, TGIF-QA FrameQA, and ActivityNet-QA. [Submitted on 20 Apr 2025]

FinSage: A Multi-aspect RAG System for Financial Filings Question Answering
Xinyu Wang, Jijun Chi, Zhenghan Tai, Tung Sum Thomas Kwok, Muzhi Li, Zhuhong Li, Hailin He, Yuchen Hua, Peng Lu, Suyuchen Wang, Yihong Wu, Jerry Huang, Ling Zhou
Leveraging large language models in real-world settings often entails a need to utilize domain-specific data and tools in order to follow the complex regulations that need to be followed for acceptable use. Within financial sectors, modern enterprises increasingly rely on Retrieval-Augmented Generation (RAG) systems to address complex compliance requirements in financial document workflows. However, existing solutions struggle to account for the inherent heterogeneity of data (e.g., text, tables, diagrams) and evolving nature of regulatory standards used in financial filings, leading to compromised accuracy in critical information extraction. We propose the FinSage framework as a solution, utilizing a multi-aspect RAG framework tailored for regulatory compliance analysis in multi-modal financial documents. FinSage introduces three innovative components: (1) a multi-modal pre-processing pipeline that unifies diverse data formats and generates chunk-level metadata summaries, (2) a multi-path sparse-dense retrieval system augmented with query expansion (HyDE) and metadata-aware semantic search, and (3) a domain-specialized re-ranking module fine-tuned via Direct Preference Optimization (DPO) to prioritize compliance-critical content. Extensive experiments demonstrate that FinSage achieves an impressive recall of 92.51% on 75 expert-curated questions derived from surpasses the best baseline method on the FinanceBench question answering datasets by 24.06% in accuracy. Moreover, FinSage has been successfully deployed as financial question-answering agent in online meetings, where it has already served more than 1,200 people. [Submitted on 20 Apr 2025]

Phoenix: A Motion-based Self-Reflection Framework for Fine-grained Robotic Action Correction
Wenke Xia, Ruoxuan Feng, Dong Wang, Di Hu
Building a generalizable self-correction system is crucial for robots to recover from failures. Despite advancements in Multimodal Large Language Models (MLLMs) that empower robots with semantic reflection ability for failure, translating semantic reflection into how to correct fine-grained robotic actions remains a significant challenge. To address this gap, we build the Phoenix framework, which leverages motion instruction as a bridge to connect high-level semantic reflection with low-level robotic action correction. In this motion-based self-reflection framework, we start with a dual-process motion adjustment mechanism with MLLMs to translate the semantic reflection into coarse-grained motion instruction adjustment. To leverage this motion instruction for guiding how to correct fine-grained robotic actions, a multi-task motion-conditioned diffusion policy is proposed to integrate visual observations for high-frequency robotic action correction. By combining these two models, we could shift the demand for generalization capability from the low-level manipulation policy to the MLLMs-driven motion adjustment model and facilitate precise, fine-grained robotic action correction. Utilizing this framework, we further develop a lifelong learning method to automatically improve the model's capability from interactions with dynamic environments. The experiments conducted in both the RoboMimic simulation and real-world scenarios prove the superior generalization and robustness of our framework across a variety of manipulation tasks. Our code is released at \href{this https URL}{this https URL}. [Submitted on 20 Apr 2025]

K2MUSE: A human lower limb multimodal dataset under diverse conditions for facilitating rehabilitation robotics
Jiwei Li, Bi Zhang, Xiaowei Tan, Wanxin Chen, Zhaoyuan Liu, Juanjuan Zhang, Weiguang Huo, Jian Huang, Lianqing Liu, Xingang Zhao
The natural interaction and control performance of lower limb rehabilitation robots are closely linked to biomechanical information from various human locomotion activities. Multidimensional human motion data significantly deepen the understanding of the complex mechanisms governing neuromuscular alterations, thereby facilitating the development and application of rehabilitation robots in multifaceted real-world environments. However, currently available lower limb datasets are inadequate for supplying the essential multimodal data and large-scale gait samples necessary for effective data-driven approaches, and they neglect the significant effects of acquisition interference in real this http URL fill this gap, we present the K2MUSE dataset, which includes a comprehensive collection of multimodal data, comprising kinematic, kinetic, amplitude-mode ultrasound (AUS), and surface electromyography (sEMG) measurements. The proposed dataset includes lower limb multimodal data from 30 able-bodied participants walking under different inclines (0$^\circ$, $\pm$5$^\circ$, and $\pm$10$^\circ$), various speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s), and different nonideal acquisition conditions (muscle fatigue, electrode shifts, and inter-day differences). The kinematic and ground reaction force data were collected via a Vicon motion capture system and an instrumented treadmill with embedded force plates, whereas the sEMG and AUS data were synchronously recorded for thirteen muscles on the bilateral lower limbs. This dataset offers a new resource for designing control frameworks for rehabilitation robots and conducting biomechanical analyses of lower limb locomotion. The dataset is available at this https URL. [Submitted on 20 Apr 2025]

Video-MMLU: A Massive Multi-Discipline Lecture Understanding Benchmark
Enxin Song, Wenhao Chai, Weili Xu, Jianwen Xie, Yuxuan Liu, Gaoang Wang
Recent advancements in language multimodal models (LMMs) for video have demonstrated their potential for understanding video content, yet the task of comprehending multi-discipline lectures remains largely unexplored. We introduce Video-MMLU, a massive benchmark designed to evaluate the capabilities of LMMs in understanding Multi-Discipline Lectures. We evaluate over 90 open-source and proprietary models, ranging from 0.5B to 40B parameters. Our results highlight the limitations of current models in addressing the cognitive challenges presented by these lectures, especially in tasks requiring both perception and reasoning. Additionally, we explore how the number of visual tokens and the large language models influence performance, offering insights into the interplay between multimodal perception and reasoning in lecture comprehension. [Submitted on 20 Apr 2025]

Object-Level Verbalized Confidence Calibration in Vision-Language Models via Semantic Perturbation
Yunpu Zhao, Rui Zhang, Junbin Xiao, Ruibo Hou, Jiaming Guo, Zihao Zhang, Yifan Hao, Yunji Chen
Vision-language models (VLMs) excel in various multimodal tasks but frequently suffer from poor calibration, resulting in misalignment between their verbalized confidence and response correctness. This miscalibration undermines user trust, especially when models confidently provide incorrect or fabricated information. In this work, we propose a novel Confidence Calibration through Semantic Perturbation (CSP) framework to improve the calibration of verbalized confidence for VLMs in response to object-centric queries. We first introduce a perturbed dataset where Gaussian noise is applied to the key object regions to simulate visual uncertainty at different confidence levels, establishing an explicit mapping between visual ambiguity and confidence levels. We further enhance calibration through a two-stage training process combining supervised fine-tuning on the perturbed dataset with subsequent preference optimization. Extensive experiments on popular benchmarks demonstrate that our method significantly improves the alignment between verbalized confidence and response correctness while maintaining or enhancing overall task performance. These results highlight the potential of semantic perturbation as a practical tool for improving the reliability and interpretability of VLMs. [Submitted on 21 Apr 2025]

Chinese-LiPS: A Chinese audio-visual speech recognition dataset with Lip-reading and Presentation Slides
Jinghua Zhao, Yuhang Jia, Shiyao Wang, Jiaming Zhou, Hui Wang, Yong Qin
Incorporating visual modalities to assist Automatic Speech Recognition (ASR) tasks has led to significant improvements. However, existing Audio-Visual Speech Recognition (AVSR) datasets and methods typically rely solely on lip-reading information or speaking contextual video, neglecting the potential of combining these different valuable visual cues within the speaking context. In this paper, we release a multimodal Chinese AVSR dataset, Chinese-LiPS, comprising 100 hours of speech, video, and corresponding manual transcription, with the visual modality encompassing both lip-reading information and the presentation slides used by the speaker. Based on Chinese-LiPS, we develop a simple yet effective pipeline, LiPS-AVSR, which leverages both lip-reading and presentation slide information as visual modalities for AVSR tasks. Experiments show that lip-reading and presentation slide information improve ASR performance by approximately 8\% and 25\%, respectively, with a combined performance improvement of about 35\%. The dataset is available at this https URL [Submitted on 21 Apr 2025]

Rethinking the Potential of Multimodality in Collaborative Problem Solving Diagnosis with Large Language Models
K. Wong, B. Wu, S. Bulathwela, M. Cukurova
Detecting collaborative and problem-solving behaviours from digital traces to interpret students' collaborative problem solving (CPS) competency is a long-term goal in the Artificial Intelligence in Education (AIEd) field. Although multimodal data and advanced models are argued to have the potential to detect complex CPS behaviours, empirical evidence on their value remains limited with some contrasting evidence. In this study, we investigated the potential of multimodal data to improve model performance in diagnosing 78 secondary school students' CPS subskills and indicators in authentic educational settings. In particular, text embeddings from verbal data and acoustic embeddings from audio data were used in a multimodal classification model for CPS diagnosis. Both unimodal and multimodal transformer-based models outperformed traditional models in detecting CPS classes. Although the inclusion of multimodality did not improve the performance of traditional unimodal models, its integration into transformer-based models demonstrated improved performance for diagnosing social-cognitive CPS classes compared to unimodal transformer-based models. Based on the results, the paper argues that multimodality and the selection of a particular modelling technique should not be taken for granted to achieve the best performance in the automated detection of every CPS subskill and indicator. Rather, their value is limited to certain types of CPS indicators, affected by the complexity of the labels, and dependent on the composition of indicators in the dataset. We conclude the paper by discussing the required nuance when considering the value of LLMs and multimodality in automated CPS diagnosis, highlighting the need for human-AI complementarity, and proposing the exploration of relevant model architectures and techniques to improve CPS diagnosis in authentic educational contexts. [Submitted on 21 Apr 2025]

KGMEL: Knowledge Graph-Enhanced Multimodal Entity Linking
Juyeon Kim, Geon Lee, Taeuk Kim, Kijung Shin
Entity linking (EL) aligns textual mentions with their corresponding entities in a knowledge base, facilitating various applications such as semantic search and question answering. Recent advances in multimodal entity linking (MEL) have shown that combining text and images can reduce ambiguity and improve alignment accuracy. However, most existing MEL methods overlook the rich structural information available in the form of knowledge-graph (KG) triples. In this paper, we propose KGMEL, a novel framework that leverages KG triples to enhance MEL. Specifically, it operates in three stages: (1) Generation: Produces high-quality triples for each mention by employing vision-language models based on its text and images. (2) Retrieval: Learns joint mention-entity representations, via contrastive learning, that integrate text, images, and (generated or KG) triples to retrieve candidate entities for each mention. (3) Reranking: Refines the KG triples of the candidate entities and employs large language models to identify the best-matching entity for the mention. Extensive experiments on benchmark datasets demonstrate that KGMEL outperforms existing methods. Our code and datasets are available at: this https URL. [Submitted on 21 Apr 2025]

Zero-Shot, But at What Cost? Unveiling the Hidden Overhead of MILS's LLM-CLIP Framework for Image Captioning
Yassir Benhammou, Alessandro Tiberio, Gabriel Trautmann, Suman Kalyan
MILS (Multimodal Iterative LLM Solver) is a recently published framework that claims "LLMs can see and hear without any training" by leveraging an iterative, LLM-CLIP based approach for zero-shot image captioning. While this MILS approach demonstrates good performance, our investigation reveals that this success comes at a hidden, substantial computational cost due to its expensive multi-step refinement process. In contrast, alternative models such as BLIP-2 and GPT-4V achieve competitive results through a streamlined, single-pass approach. We hypothesize that the significant overhead inherent in MILS's iterative process may undermine its practical benefits, thereby challenging the narrative that zero-shot performance can be attained without incurring heavy resource demands. This work is the first to expose and quantify the trade-offs between output quality and computational cost in MILS, providing critical insights for the design of more efficient multimodal models. [Submitted on 21 Apr 2025]

MMKB-RAG: A Multi-Modal Knowledge-Based Retrieval-Augmented Generation Framework
Zihan Ling, Zhiyao Guo, Yixuan Huang, Yi An, Shuai Xiao, Jinsong Lan, Xiaoyong Zhu, Bo Zheng
Recent advancements in large language models (LLMs) and multi-modal LLMs have been remarkable. However, these models still rely solely on their parametric knowledge, which limits their ability to generate up-to-date information and increases the risk of producing erroneous content. Retrieval-Augmented Generation (RAG) partially mitigates these challenges by incorporating external data sources, yet the reliance on databases and retrieval systems can introduce irrelevant or inaccurate documents, ultimately undermining both performance and reasoning quality. In this paper, we propose Multi-Modal Knowledge-Based Retrieval-Augmented Generation (MMKB-RAG), a novel multi-modal RAG framework that leverages the inherent knowledge boundaries of models to dynamically generate semantic tags for the retrieval process. This strategy enables the joint filtering of retrieved documents, retaining only the most relevant and accurate references. Extensive experiments on knowledge-based visual question-answering tasks demonstrate the efficacy of our approach: on the E-VQA dataset, our method improves performance by +4.2% on the Single-Hop subset and +0.4% on the full dataset, while on the InfoSeek dataset, it achieves gains of +7.8% on the Unseen-Q subset, +8.2% on the Unseen-E subset, and +8.1% on the full dataset. These results highlight significant enhancements in both accuracy and robustness over the current state-of-the-art MLLM and RAG frameworks. [Submitted on 14 Apr 2025 (v1), last revised 20 Apr 2025 (this version, v3)]

Inspecting Explainability of Transformer Models with Additional Statistical Information
Hoang C. Nguyen, Haeil Lee, Junmo Kim
Transformer becomes more popular in the vision domain in recent years so there is a need for finding an effective way to interpret the Transformer model by visualizing it. In recent work, Chefer et al. can visualize the Transformer on vision and multi-modal tasks effectively by combining attention layers to show the importance of each image patch. However, when applying to other variants of Transformer such as the Swin Transformer, this method can not focus on the predicted object. Our method, by considering the statistics of tokens in layer normalization layers, shows a great ability to interpret the explainability of Swin Transformer and ViT. [Submitted on 19 Nov 2023 (v1), last revised 19 Apr 2025 (this version, v2)]

SparQLe: Speech Queries to Text Translation Through LLMs
Amirbek Djanibekov, Hanan Aldarmaki
With the growing influence of Large Language Models (LLMs), there is increasing interest in integrating speech representations with them to enable more seamless multi-modal processing and speech understanding. This study introduces a novel approach that leverages self-supervised speech representations in combination with instruction-tuned LLMs for speech-to-text translation. The proposed approach leverages a modality adapter to align extracted speech features with instruction-tuned LLMs using English-language data. Our experiments demonstrate that this method effectively preserves the semantic content of the input speech and serves as an effective bridge between self-supervised speech models and instruction-tuned LLMs, offering a promising solution for various speech understanding applications. [Submitted on 13 Feb 2025 (v1), last revised 19 Apr 2025 (this version, v2)]

Steganography Beyond Space-Time with Chain of Multimodal AI
Ching-Chun Chang, Isao Echizen
Steganography is the art and science of covert writing, with a broad range of applications interwoven within the realm of cybersecurity. As artificial intelligence continues to evolve, its ability to synthesise realistic content emerges as a threat in the hands of cybercriminals who seek to manipulate and misrepresent the truth. Such synthetic content introduces a non-trivial risk of overwriting the subtle changes made for the purpose of steganography. When the signals in both the spatial and temporal domains are vulnerable to unforeseen overwriting, it calls for reflection on what, if any, remains invariant. This study proposes a paradigm in steganography for audiovisual media, where messages are concealed beyond both spatial and temporal domains. A chain of multimodal artificial intelligence is developed to deconstruct audiovisual content into a cover text, embed a message within the linguistic domain, and then reconstruct the audiovisual content through synchronising both auditory and visual modalities with the resultant stego text. The message is encoded by biasing the word sampling process of a language generation model and decoded by analysing the probability distribution of word choices. The accuracy of message transmission is evaluated under both zero-bit and multi-bit capacity settings. Fidelity is assessed through both biometric and semantic similarities, capturing the identities of the recorded face and voice, as well as the core ideas conveyed through the media. Secrecy is examined through statistical comparisons between cover and stego texts. Robustness is tested across various scenarios, including audiovisual resampling, face-swapping, voice-cloning and their combinations. [Submitted on 25 Feb 2025 (v1), last revised 20 Apr 2025 (this version, v2)]

MedUnifier: Unifying Vision-and-Language Pre-training on Medical Data with Vision Generation Task using Discrete Visual Representations
Ziyang Zhang, Yang Yu, Yucheng Chen, Xulei Yang, Si Yong Yeo
Despite significant progress in Vision-Language Pre-training (VLP), current approaches predominantly emphasize feature extraction and cross-modal comprehension, with limited attention to generating or transforming visual content. This gap hinders the model's ability to synthesize coherent and novel visual representations from textual prompts, thereby reducing the effectiveness of multi-modal learning. In this work, we propose MedUnifier, a unified VLP framework tailored for medical data. MedUnifier seamlessly integrates text-grounded image generation capabilities with multi-modal learning strategies, including image-text contrastive alignment, image-text matching and image-grounded text generation. Unlike traditional methods that reply on continuous visual representations, our approach employs visual vector quantization, which not only facilitates a more cohesive learning strategy for cross-modal understanding but also enhances multi-modal generation quality by effectively leveraging discrete representations. Our framework's effectiveness is evidenced by the experiments on established benchmarks, including uni-modal tasks (supervised fine-tuning), cross-modal tasks (image-text retrieval and zero-shot image classification), and multi-modal tasks (medical report generation, image synthesis), where it achieves state-of-the-art performance across various tasks. MedUnifier also offers a highly adaptable tool for a wide range of language and vision tasks in healthcare, marking advancement toward the development of a generalizable AI model for medical applications. [Submitted on 2 Mar 2025 (v1), last revised 20 Apr 2025 (this version, v3)]

Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation
Tiansheng Wen, Yifei Wang, Zequn Zeng, Zhong Peng, Yudi Su, Xinyang Liu, Bo Chen, Hongwei Liu, Stefanie Jegelka, Chenyu You
Many large-scale systems rely on high-quality deep representations (embeddings) to facilitate tasks like retrieval, search, and generative modeling. Matryoshka Representation Learning (MRL) recently emerged as a solution for adaptive embedding lengths, but it requires full model retraining and suffers from noticeable performance degradations at short lengths. In this paper, we show that sparse coding offers a compelling alternative for achieving adaptive representation with minimal overhead and higher fidelity. We propose Contrastive Sparse Representation (CSR), a method that sparsifies pre-trained embeddings into a high-dimensional but selectively activated feature space. By leveraging lightweight autoencoding and task-aware contrastive objectives, CSR preserves semantic quality while allowing flexible, cost-effective inference at different sparsity levels. Extensive experiments on image, text, and multimodal benchmarks demonstrate that CSR consistently outperforms MRL in terms of both accuracy and retrieval speed-often by large margins-while also cutting training time to a fraction of that required by MRL. Our results establish sparse coding as a powerful paradigm for adaptive representation learning in real-world applications where efficiency and fidelity are both paramount. Code is available at this https URL [Submitted on 3 Mar 2025 (v1), last revised 19 Apr 2025 (this version, v3)]

AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons
Shaona Ghosh, Heather Frase, Adina Williams, Sarah Luger, Paul Röttger, Fazl Barez, Sean McGregor, Kenneth Fricklas, Mala Kumar, Quentin Feuillade--Montixi, Kurt Bollacker, Felix Friedrich, Ryan Tsang, Bertie Vidgen, Alicia Parrish, Chris Knotz, Eleonora Presani, Jonathan Bennion, Marisa Ferrara Boston, Mike Kuniavsky, Wiebke Hutiri, James Ezick, Malek Ben Salem, Rajat Sahay, Sujata Goswami, Usman Gohar, Ben Huang, Supheakmungkol Sarin, Elie Alhajjar, Canyu Chen, Roman Eng, Kashyap Ramanandula Manjusha, Virendra Mehta, Eileen Long, Murali Emani, Natan Vidra, Benjamin Rukundo, Abolfazl Shahbazi, Kongtao Chen, Rajat Ghosh, Vithursan Thangarasa, Pierre Peigné, Abhinav Singh, Max Bartolo, Satyapriya Krishna, Mubashara Akhtar, Rafael Gold, Cody Coleman, Luis Oala, Vassil Tashev, Joseph Marvin Imperial, Amy Russ, Sasidhar Kunapuli, Nicolas Miailhe, Julien Delaunay, Bhaktipriya Radharapu, Rajat Shinde, Tuesday, Debojyoti Dutta, Declan Grabb, Ananya Gangavarapu, Saurav Sahay, Agasthya Gangavarapu, Patrick Schramowski, Stephen Singam, Tom David, Xudong Han, Priyanka Mary Mammen, Tarunima Prabhakar, Venelin Kovatchev, Rebecca Weiss, Ahmed Ahmed, Kelvin N. Manyeki, Sandeep Madireddy, Foutse Khomh, Fedor Zhdanov, Joachim Baumann, Nina Vasan, Xianjun Yang, Carlos Mougn, Jibin Rajan Varghese, Hussain Chinoy, Seshakrishna Jitendar, Manil Maskey, Claire V. Hardgrove, Tianhao Li, Aakash Gupta, Emil Joswin, Yifan Mai, Shachi H Kumar, Cigdem Patlak, Kevin Lu, Vincent Alessi, Sree Bhargavi Balija, Chenhe Gu, Robert Sullivan, James Gealy, Matt Lavrisa, James Goel, Peter Mattson , Percy Liang, Joaquin Vanschoren et al. (2 additional authors not shown)  You must enable JavaScript to view entire author list.
The rapid advancement and deployment of AI systems have created an urgent need for standard safety-evaluation frameworks. This paper introduces AILuminate v1.0, the first comprehensive industry-standard benchmark for assessing AI-product risk and reliability. Its development employed an open process that included participants from multiple fields. The benchmark evaluates an AI system's resistance to prompts designed to elicit dangerous, illegal, or undesirable behavior in 12 hazard categories, including violent crimes, nonviolent crimes, sex-related crimes, child sexual exploitation, indiscriminate weapons, suicide and self-harm, intellectual property, privacy, defamation, hate, sexual content, and specialized advice (election, financial, health, legal). Our method incorporates a complete assessment standard, extensive prompt datasets, a novel evaluation framework, a grading and reporting system, and the technical as well as organizational infrastructure for long-term support and evolution. In particular, the benchmark employs an understandable five-tier grading scale (Poor to Excellent) and incorporates an innovative entropy-based system-response evaluation. In addition to unveiling the benchmark, this report also identifies limitations of our method and of building safety benchmarks generally, including evaluator uncertainty and the constraints of single-turn interactions. This work represents a crucial step toward establishing global standards for AI risk and reliability evaluation while acknowledging the need for continued development in areas such as multiturn interactions, multimodal understanding, coverage of additional languages, and emerging hazard categories. Our findings provide valuable insights for model developers, system integrators, and policymakers working to promote safer AI deployment. [Submitted on 19 Feb 2025 (v1), last revised 18 Apr 2025 (this version, v2)]

A Survey on Music Generation from Single-Modal, Cross-Modal, and Multi-Modal Perspectives
Shuyu Li, Shulei Ji, Zihao Wang, Songruoyao Wu, Jiaxing Yu, Kejun Zhang
Multi-modal music generation, using multiple modalities like text, images, and video alongside musical scores and audio as guidance, is an emerging research area with broad applications. This paper reviews this field, categorizing music generation systems from the perspective of modalities. The review covers modality representation, multi-modal data alignment, and their utilization to guide music generation. Current datasets and evaluation methods are also discussed. Key challenges in this area include effective multi-modal integration, large-scale comprehensive datasets, and systematic evaluation methods. Finally, an outlook on future research directions is provided, focusing on creativity, efficiency, multi-modal alignment, and evaluation. [Submitted on 1 Apr 2025 (v1), last revised 20 Apr 2025 (this version, v2)]

Neural Encoding and Decoding at Scale
Yizi Zhang, Yanchen Wang, Mehdi Azabou, Alexandre Andre, Zixuan Wang, Hanrui Lyu, The International Brain Laboratory, Eva Dyer, Liam Paninski, Cole Hurwitz
Recent work has demonstrated that large-scale, multi-animal models are powerful tools for characterizing the relationship between neural activity and behavior. Current large-scale approaches, however, focus exclusively on either predicting neural activity from behavior (encoding) or predicting behavior from neural activity (decoding), limiting their ability to capture the bidirectional relationship between neural activity and behavior. To bridge this gap, we introduce a multimodal, multi-task model that enables simultaneous Neural Encoding and Decoding at Scale (NEDS). Central to our approach is a novel multi-task-masking strategy, which alternates between neural, behavioral, within-modality, and cross-modality masking. We pretrain our method on the International Brain Laboratory (IBL) repeated site dataset, which includes recordings from 83 animals performing the same visual decision-making task. In comparison to other large-scale models, we demonstrate that NEDS achieves state-of-the-art performance for both encoding and decoding when pretrained on multi-animal data and then fine-tuned on new animals. Surprisingly, NEDS's learned embeddings exhibit emergent properties: even without explicit training, they are highly predictive of the brain regions in each recording. Altogether, our approach is a step towards a foundation model of the brain that enables seamless translation between neural activity and behavior. [Submitted on 11 Apr 2025 (v1), last revised 20 Apr 2025 (this version, v3)]

FROG: Effective Friend Recommendation in Online Games via Modality-aware User Preferences
Qiwei Wang, Dandan Lin, Wenqing Lin, Ziming Wu
Due to the convenience of mobile devices, the online games have become an important part for user entertainments in reality, creating a demand for friend recommendation in online games. However, none of existing approaches can effectively incorporate the multi-modal user features (e.g., images and texts) with the structural information in the friendship graph, due to the following limitations: (1) some of them ignore the high-order structural proximity between users, (2) some fail to learn the pairwise relevance between users at modality-specific level, and (3) some cannot capture both the local and global user preferences on different modalities. By addressing these issues, in this paper, we propose an end-to-end model FROG that better models the user preferences on potential friends. Comprehensive experiments on both offline evaluation and online deployment at Tencent have demonstrated the superiority of FROG over existing approaches. [Submitted on 13 Apr 2025 (v1), last revised 21 Apr 2025 (this version, v2)]

2025-04-21
Creative
Exploring Multimodal Prompt for Visualization Authoring with Large Language Models
Zhen Wen, Luoxuan Weng, Yinghao Tang, Runjin Zhang, Yuxin Liu, Bo Pan, Minfeng Zhu, Wei Chen
Recent advances in large language models (LLMs) have shown great potential in automating the process of visualization authoring through simple natural language utterances. However, instructing LLMs using natural language is limited in precision and expressiveness for conveying visualization intent, leading to misinterpretation and time-consuming iterations. To address these limitations, we conduct an empirical study to understand how LLMs interpret ambiguous or incomplete text prompts in the context of visualization authoring, and the conditions making LLMs misinterpret user intent. Informed by the findings, we introduce visual prompts as a complementary input modality to text prompts, which help clarify user intent and improve LLMs' interpretation abilities. To explore the potential of multimodal prompting in visualization authoring, we design VisPilot, which enables users to easily create visualizations using multimodal prompts, including text, sketches, and direct manipulations on existing visualizations. Through two case studies and a controlled user study, we demonstrate that VisPilot provides a more intuitive way to create visualizations without affecting the overall task efficiency compared to text-only prompting approaches. Furthermore, we analyze the impact of text and visual prompts in different visualization tasks. Our findings highlight the importance of multimodal prompting in improving the usability of LLMs for visualization authoring. We discuss design implications for future visualization systems and provide insights into how multimodal prompts can enhance human-AI collaboration in creative visualization tasks. All materials are available at this https URL. [Submitted on 18 Apr 2025]

Reducing the Scope of Language Models
David Yunis, Siyu Huo, Chulaka Gunasekara, Danish Contractor
We now deploy language models in a wide variety of user-facing applications. Typically, these deployments have some specific purpose, like answering questions about documentation or acting as coding assistants, but they require general language understanding. Under these circumstances these models should not be able to answer irrelevant requests such as, poetry generation or questions about physics, etc. Instead we would like language models to only answer to queries corresponding to desired behavior and refuse all other requests, which we refer to as scoping. We conduct a comprehensive empirical evaluation of potential methods from prompting to fine-tuning to preference learning to a recently proposed method for general alignment called Circuit Breakers (CB). Across three families of language models and a broad variety of tasks, we show that it is possible to scope language models. We examine scoping for multiple topics, and fine-grained topics. We ablate diversity of irrelevant queries, layer different techniques, conduct adversarial evaluations and more. Among other results, we find that, when diverse examples of irrelevant queries are available, simple supervised fine-tuning produces the best results, but when such diversity is low, Circuit Breakers perform quite well. One can often get the benefits of both methods by layering them in succession. We intend our study to serve as a practitioner's guide to scoping language models. [Submitted on 28 Oct 2024 (v1), last revised 17 Apr 2025 (this version, v2)]

Reasoning
Cost-of-Pass: An Economic Framework for Evaluating Language Models
Mehmet Hamza Erol, Batu El, Mirac Suzgun, Mert Yuksekgonul, James Zou
The widespread adoption of AI systems in the economy hinges on their ability to generate economic value that outweighs their inference costs. Evaluating this tradeoff requires metrics that account for both performance and costs. We propose a framework grounded in production theory for evaluating language models by combining accuracy and inference cost. We introduce "cost-of-pass", the expected monetary cost of generating a correct solution. We then define the "frontier cost-of-pass" as the minimum cost-of-pass achievable across available models or the "human-expert, using the approximate cost of hiring an expert. Our analysis reveals distinct economic insights. First, lightweight models are most cost-effective for basic quantitative tasks, large models for knowledge-intensive ones, and reasoning models for complex quantitative problems, despite higher per-token costs. Second, tracking this frontier cost-of-pass over the past year reveals significant progress, particularly for complex quantitative tasks where the cost has roughly halved every few months. Third, to trace key innovations driving this progress, we examine counterfactual frontiers: estimates of cost-efficiency without specific model classes. We find that innovations in lightweight, large, and reasoning models have been essential for pushing the frontier in basic quantitative, knowledge-intensive, and complex quantitative tasks, respectively. Finally, we assess the cost-reductions afforded by common inference-time techniques like majority voting and self-refinement, finding that their marginal accuracy gains rarely justify their costs. Our findings underscore that complementary model-level innovations are the primary drivers of cost-efficiency, and our economic framework provides a principled tool for measuring this progress and guiding deployment. [Submitted on 17 Apr 2025]

Exploring the Potential for Large Language Models to Demonstrate Rational Probabilistic Beliefs
Gabriel Freedman, Francesca Toni
Advances in the general capabilities of large language models (LLMs) have led to their use for information retrieval, and as components in automated decision systems. A faithful representation of probabilistic reasoning in these models may be essential to ensure trustworthy, explainable and effective performance in these tasks. Despite previous work suggesting that LLMs can perform complex reasoning and well-calibrated uncertainty quantification, we find that current versions of this class of model lack the ability to provide rational and coherent representations of probabilistic beliefs. To demonstrate this, we introduce a novel dataset of claims with indeterminate truth values and apply a number of well-established techniques for uncertainty quantification to measure the ability of LLM's to adhere to fundamental properties of probabilistic reasoning. [Submitted on 18 Apr 2025]

OpenDeception: Benchmarking and Investigating AI Deceptive Behaviors via Open-ended Interaction Simulation
Yichen Wu, Xudong Pan, Geng Hong, Min Yang
As the general capabilities of large language models (LLMs) improve and agent applications become more widespread, the underlying deception risks urgently require systematic evaluation and effective oversight. Unlike existing evaluation which uses simulated games or presents limited choices, we introduce OpenDeception, a novel deception evaluation framework with an open-ended scenario dataset. OpenDeception jointly evaluates both the deception intention and capabilities of LLM-based agents by inspecting their internal reasoning process. Specifically, we construct five types of common use cases where LLMs intensively interact with the user, each consisting of ten diverse, concrete scenarios from the real world. To avoid ethical concerns and costs of high-risk deceptive interactions with human testers, we propose to simulate the multi-turn dialogue via agent simulation. Extensive evaluation of eleven mainstream LLMs on OpenDeception highlights the urgent need to address deception risks and security concerns in LLM-based agents: the deception intention ratio across the models exceeds 80%, while the deception success rate surpasses 50%. Furthermore, we observe that LLMs with stronger capabilities do exhibit a higher risk of deception, which calls for more alignment efforts on inhibiting deceptive behaviors. [Submitted on 18 Apr 2025]

Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, Gao Huang
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning capabilities of LLMs, particularly in mathematics and programming tasks. It is widely believed that RLVR enables LLMs to continuously self-improve, thus acquiring novel reasoning abilities that exceed corresponding base models' capacity. In this study, however, we critically re-examines this assumption by measuring the pass@\textit{k} metric with large values of \textit{k} to explore the reasoning capability boundary of the models across a wide range of model families and benchmarks. Surprisingly, the RL does \emph{not}, in fact, elicit fundamentally new reasoning patterns. While RL-trained models outperform their base models at smaller values of $k$ (\eg, $k$=1), base models can achieve a comparable or even higher pass@$k$ score compared to their RL counterparts at large $k$ values. The reasoning paths generated by RL-trained models are already included in the base models' sampling distribution, suggesting that most reasoning abilities manifested in RL-trained models are already obtained by base models. Further analysis shows that RL training boosts the performance by biasing the model's output distribution toward paths that are more likely to yield rewards, therefore sampling correct responses more efficiently. But this also results in a narrower reasoning capability boundary compared to base models. Similar results are observed in visual reasoning tasks trained with RLVR. Moreover, we find that distillation can genuinely introduce new knowledge into the model, different from RLVR. These findings underscore a critical limitation of RLVR in advancing LLM reasoning abilities which requires us to fundamentally rethink the impact of RL training in reasoning LLMs and the need of a better paradigm. Project Page: this https URL [Submitted on 18 Apr 2025]

CheatAgent: Attacking LLM-Empowered Recommender Systems via LLM Agent
Liang-bo Ning, Shijie Wang, Wenqi Fan, Qing Li, Xin Xu, Hao Chen, Feiran Huang
Recently, Large Language Model (LLM)-empowered recommender systems (RecSys) have brought significant advances in personalized user experience and have attracted considerable attention. Despite the impressive progress, the research question regarding the safety vulnerability of LLM-empowered RecSys still remains largely under-investigated. Given the security and privacy concerns, it is more practical to focus on attacking the black-box RecSys, where attackers can only observe the system's inputs and outputs. However, traditional attack approaches employing reinforcement learning (RL) agents are not effective for attacking LLM-empowered RecSys due to the limited capabilities in processing complex textual inputs, planning, and reasoning. On the other hand, LLMs provide unprecedented opportunities to serve as attack agents to attack RecSys because of their impressive capability in simulating human-like decision-making processes. Therefore, in this paper, we propose a novel attack framework called CheatAgent by harnessing the human-like capabilities of LLMs, where an LLM-based agent is developed to attack LLM-Empowered RecSys. Specifically, our method first identifies the insertion position for maximum impact with minimal input modification. After that, the LLM agent is designed to generate adversarial perturbations to insert at target positions. To further improve the quality of generated perturbations, we utilize the prompt tuning technique to improve attacking strategies via feedback from the victim RecSys iteratively. Extensive experiments across three real-world datasets demonstrate the effectiveness of our proposed attacking method. [Submitted on 13 Apr 2025]

KFinEval-Pilot: A Comprehensive Benchmark Suite for Korean Financial Language Understanding
Bokwang Hwang, Seonkyu Lim, Taewoong Kim, Yongjae Geun, Sunghyun Bang, Sohyun Park, Jihyun Park, Myeonggyu Lee, Jinwoo Lee, Yerin Kim, Jinsun Yoo, Jingyeong Hong, Jina Park, Yongchan Kim, Suhyun Kim, Younggyun Hahm, Yiseul Lee, Yejee Kang, Chanhyuk Yoon, Chansu Lee, Heeyewon Jeong, Jiyeon Lee, Seonhye Gu, Hyebin Kang, Yousang Cho, Hangyeol Yoo, KyungTae Lim
We introduce KFinEval-Pilot, a benchmark suite specifically designed to evaluate large language models (LLMs) in the Korean financial domain. Addressing the limitations of existing English-centric benchmarks, KFinEval-Pilot comprises over 1,000 curated questions across three critical areas: financial knowledge, legal reasoning, and financial toxicity. The benchmark is constructed through a semi-automated pipeline that combines GPT-4-generated prompts with expert validation to ensure domain relevance and factual accuracy. We evaluate a range of representative LLMs and observe notable performance differences across models, with trade-offs between task accuracy and output safety across different model families. These results highlight persistent challenges in applying LLMs to high-stakes financial applications, particularly in reasoning and safety. Grounded in real-world financial use cases and aligned with the Korean regulatory and linguistic context, KFinEval-Pilot serves as an early diagnostic tool for developing safer and more reliable financial AI systems. [Submitted on 17 Apr 2025]

Towards a Multi-Agent Vision-Language System for Zero-Shot Novel Hazardous Object Detection for Autonomous Driving Safety
Shashank Shriram, Srinivasa Perisetla, Aryan Keskar, Harsha Krishnaswamy, Tonko Emil Westerhof Bossen, Andreas Møgelmose, Ross Greer
Detecting anomalous hazards in visual data, particularly in video streams, is a critical challenge in autonomous driving. Existing models often struggle with unpredictable, out-of-label hazards due to their reliance on predefined object categories. In this paper, we propose a multimodal approach that integrates vision-language reasoning with zero-shot object detection to improve hazard identification and explanation. Our pipeline consists of a Vision-Language Model (VLM), a Large Language Model (LLM), in order to detect hazardous objects within a traffic scene. We refine object detection by incorporating OpenAI's CLIP model to match predicted hazards with bounding box annotations, improving localization accuracy. To assess model performance, we create a ground truth dataset by denoising and extending the foundational COOOL (Challenge-of-Out-of-Label) anomaly detection benchmark dataset with complete natural language descriptions for hazard annotations. We define a means of hazard detection and labeling evaluation on the extended dataset using cosine similarity. This evaluation considers the semantic similarity between the predicted hazard description and the annotated ground truth for each video. Additionally, we release a set of tools for structuring and managing large-scale hazard detection datasets. Our findings highlight the strengths and limitations of current vision-language-based approaches, offering insights into future improvements in autonomous hazard detection systems. Our models, scripts, and data can be found at this https URL [Submitted on 18 Apr 2025]

Creating 'Full-Stack' Hybrid Reasoning Systems that Prioritize and Enhance Human Intelligence
Sean Koon
The idea of augmented or hybrid intelligence offers a compelling vision for combining human and AI capabilities, especially in tasks where human wisdom, expertise, or common sense are essential. Unfortunately, human reasoning can be flawed and shortsighted, resulting in adverse individual impacts or even long-term societal consequences. While strong efforts are being made to develop and optimize the AI aspect of hybrid reasoning, the real urgency lies in fostering wiser and more intelligent human participation. Tools that enhance critical thinking, ingenuity, expertise, and even wisdom could be essential in addressing the challenges of our emerging future. This paper proposes the development of generative AI-based tools that enhance both the human ability to reflect upon a problem as well as the ability to explore the technical aspects of it. A high-level model is also described for integrating AI and human capabilities in a way that centralizes human participation and control. [Submitted on 18 Apr 2025]

CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models
Feiyang Li, Peng Fang, Zhan Shi, Arijit Khan, Fang Wang, Dan Feng, Weihao Wang, Xin Zhang, Yongjian Cui
While chain-of-thought (CoT) reasoning improves the performance of large language models (LLMs) in complex tasks, it still has two main challenges: the low reliability of relying solely on LLMs to generate reasoning chains and the interference of natural language reasoning chains on the inference logic of LLMs. To address these issues, we propose CoT-RAG, a novel reasoning framework with three key designs: (i) Knowledge Graph-driven CoT Generation, featuring knowledge graphs to modulate reasoning chain generation of LLMs, thereby enhancing reasoning credibility; (ii) Learnable Knowledge Case-aware RAG, which incorporates retrieval-augmented generation (RAG) into knowledge graphs to retrieve relevant sub-cases and sub-descriptions, providing LLMs with learnable information; (iii) Pseudo-Program Prompting Execution, which encourages LLMs to execute reasoning tasks in pseudo-programs with greater logical rigor. We conduct a comprehensive evaluation on nine public datasets, covering three reasoning problems. Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%. Furthermore, testing on four domain-specific datasets, CoT-RAG shows remarkable accuracy and efficient execution, highlighting its strong practical applicability and scalability. [Submitted on 18 Apr 2025]

Thought Manipulation: External Thought Can Be Efficient for Large Reasoning Models
Yule Liu, Jingyi Zheng, Zhen Sun, Zifan Peng, Wenhan Dong, Zeyang Sha, Shiwen Cui, Weiqiang Wang, Xinlei He
Recent advancements in large reasoning models (LRMs) have demonstrated the effectiveness of scaling test-time computation to enhance reasoning capabilities in multiple tasks. However, LRMs typically suffer from "overthinking" problems, where models generate significantly redundant reasoning steps while bringing limited performance gains. Existing work relies on fine-tuning to mitigate overthinking, which requires additional data, unconventional training setups, risky safety misalignment, and poor generalization. Through empirical analysis, we reveal an important characteristic of LRM behaviors that placing external CoTs generated by smaller models between the thinking token ($\texttt{<think>}$ and $\texttt{</think>)}$ can effectively manipulate the model to generate fewer thoughts. Building on these insights, we propose a simple yet efficient pipeline, ThoughtMani, to enable LRMs to bypass unnecessary intermediate steps and reduce computational costs significantly. We conduct extensive experiments to validate the utility and efficiency of ThoughtMani. For instance, when applied to QwQ-32B on the LiveBench/Code dataset, ThoughtMani keeps the original performance and reduces output token counts by approximately 30%, with little overhead from the CoT generator. Furthermore, we find that ThoughtMani enhances safety alignment by an average of 10%. Since model vendors typically serve models of different sizes simultaneously, ThoughtMani provides an effective way to construct more efficient and accessible LRMs for real-world applications. [Submitted on 18 Apr 2025]

Human-aligned Deep Learning: Explainability, Causality, and Biological Inspiration
Gianluca Carloni
This work aligns deep learning (DL) with human reasoning capabilities and needs to enable more efficient, interpretable, and robust image classification. We approach this from three perspectives: explainability, causality, and biological vision. Introduction and background open this work before diving into operative chapters. First, we assess neural networks' visualization techniques for medical images and validate an explainable-by-design method for breast mass classification. A comprehensive review at the intersection of XAI and causality follows, where we introduce a general scaffold to organize past and future research, laying the groundwork for our second perspective. In the causality direction, we propose novel modules that exploit feature co-occurrence in medical images, leading to more effective and explainable predictions. We further introduce CROCODILE, a general framework that integrates causal concepts, contrastive learning, feature disentanglement, and prior knowledge to enhance generalization. Lastly, we explore biological vision, examining how humans recognize objects, and propose CoCoReco, a connectivity-inspired network with context-aware attention mechanisms. Overall, our key findings include: (i) simple activation maximization lacks insight for medical imaging DL models; (ii) prototypical-part learning is effective and radiologically aligned; (iii) XAI and causal ML are deeply connected; (iv) weak causal signals can be leveraged without a priori information to improve performance and interpretability; (v) our framework generalizes across medical domains and out-of-distribution data; (vi) incorporating biological circuit motifs improves human-aligned recognition. This work contributes toward human-aligned DL and highlights pathways to bridge the gap between research and clinical adoption, with implications for improved trust, diagnostic accuracy, and safe deployment. [Submitted on 18 Apr 2025]

Learning Through Retrospection: Improving Trajectory Prediction for Automated Driving with Error Feedback
Steffen Hagedorn, Aron Distelzweig, Marcel Hallgarten, Alexandru P. Condurache
In automated driving, predicting trajectories of surrounding vehicles supports reasoning about scene dynamics and enables safe planning for the ego vehicle. However, existing models handle predictions as an instantaneous task of forecasting future trajectories based on observed information. As time proceeds, the next prediction is made independently of the previous one, which means that the model cannot correct its errors during inference and will repeat them. To alleviate this problem and better leverage temporal data, we propose a novel retrospection technique. Through training on closed-loop rollouts the model learns to use aggregated feedback. Given new observations it reflects on previous predictions and analyzes its errors to improve the quality of subsequent predictions. Thus, the model can learn to correct systematic errors during inference. Comprehensive experiments on nuScenes and Argoverse demonstrate a considerable decrease in minimum Average Displacement Error of up to 31.9% compared to the state-of-the-art baseline without retrospection. We further showcase the robustness of our technique by demonstrating a better handling of out-of-distribution scenarios with undetected road-users. [Submitted on 18 Apr 2025]

Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning
Yixuan Even Xu, Yash Savani, Fei Fang, Zico Kolter
Reinforcement learning (RL) has emerged as a powerful paradigm for enhancing reasoning capabilities in large language models, but faces a fundamental asymmetry in computation and memory requirements: inference is embarrassingly parallel with a minimal memory footprint, while policy updates require extensive synchronization and are memory-intensive. To address this asymmetry, we introduce PODS (Policy Optimization with Down-Sampling), a framework that strategically decouples these phases by generating numerous rollouts in parallel but updating only on an informative subset. Within this framework, we develop max-variance down-sampling, a theoretically motivated method that selects rollouts with maximally diverse reward signals. We prove that this approach has an efficient algorithmic solution, and empirically demonstrate that GRPO with PODS using max-variance down-sampling achieves superior performance over standard GRPO on the GSM8K benchmark. [Submitted on 18 Apr 2025]

Does Spatial Cognition Emerge in Frontier Models?
Santhosh Kumar Ramakrishnan, Erik Wijmans, Philipp Kraehenbuehl, Vladlen Koltun
Not yet. We present SPACE, a benchmark that systematically evaluates spatial cognition in frontier models. Our benchmark builds on decades of research in cognitive science. It evaluates large-scale mapping abilities that are brought to bear when an organism traverses physical environments, smaller-scale reasoning about object shapes and layouts, and cognitive infrastructure such as spatial attention and memory. For many tasks, we instantiate parallel presentations via text and images, allowing us to benchmark both large language models and large multimodal models. Results suggest that contemporary frontier models fall short of the spatial intelligence of animals, performing near chance level on a number of classic tests of animal cognition. Code and data are available: this https URL [Submitted on 9 Oct 2024 (v1), last revised 18 Apr 2025 (this version, v2)]

Unified Parameter-Efficient Unlearning for LLMs
Chenlu Ding, Jiancan Wu, Yancheng Yuan, Jinda Lu, Kai Zhang, Alex Su, Xiang Wang, Xiangnan He
The advent of Large Language Models (LLMs) has revolutionized natural language processing, enabling advanced understanding and reasoning capabilities across a variety of tasks. Fine-tuning these models for specific domains, particularly through Parameter-Efficient Fine-Tuning (PEFT) strategies like LoRA, has become a prevalent practice due to its efficiency. However, this raises significant privacy and security concerns, as models may inadvertently retain and disseminate sensitive or undesirable information. To address these issues, we introduce a novel instance-wise unlearning framework, LLMEraser, which systematically categorizes unlearning tasks and applies precise parameter adjustments using influence functions. Unlike traditional unlearning techniques that are often limited in scope and require extensive retraining, LLMEraser is designed to handle a broad spectrum of unlearning tasks without compromising model performance. Extensive experiments on benchmark datasets demonstrate that LLMEraser excels in efficiently managing various unlearning scenarios while maintaining the overall integrity and efficacy of the models. [Submitted on 30 Nov 2024 (v1), last revised 18 Apr 2025 (this version, v2)]

Argumentative Large Language Models for Explainable and Contestable Claim Verification
Gabriel Freedman, Adam Dejl, Deniz Gorur, Xiang Yin, Antonio Rago, Francesca Toni
The profusion of knowledge encoded in large language models (LLMs) and their ability to apply this knowledge zero-shot in a range of settings makes them promising candidates for use in decision-making. However, they are currently limited by their inability to provide outputs which can be faithfully explained and effectively contested to correct mistakes. In this paper, we attempt to reconcile these strengths and weaknesses by introducing \emph{argumentative LLMs (ArgLLMs)}, a method for augmenting LLMs with argumentative reasoning. Concretely, ArgLLMs construct argumentation frameworks, which then serve as the basis for formal reasoning in support of decision-making. The interpretable nature of these argumentation frameworks and formal reasoning means that any decision made by ArgLLMs may be explained and contested. We evaluate ArgLLMs' performance experimentally in comparison with state-of-the-art techniques, in the context of the decision-making task of claim verification. We also define novel properties to characterise contestability and assess ArgLLMs formally in terms of these properties. [Submitted on 3 May 2024 (v1), last revised 18 Apr 2025 (this version, v3)]

Improving LLM-powered Recommendations with Personalized Information
Jiahao Liu, Xueshuo Yan, Dongsheng Li, Guangping Zhang, Hansu Gu, Peng Zhang, Tun Lu, Li Shang, Ning Gu
Due to the lack of explicit reasoning modeling, existing LLM-powered recommendations fail to leverage LLMs' reasoning capabilities effectively. In this paper, we propose a pipeline called CoT-Rec, which integrates two key Chain-of-Thought (CoT) processes -- user preference analysis and item perception analysis -- into LLM-powered recommendations, thereby enhancing the utilization of LLMs' reasoning abilities. CoT-Rec consists of two stages: (1) personalized information extraction, where user preferences and item perception are extracted, and (2) personalized information utilization, where this information is incorporated into the LLM-powered recommendation process. Experimental results demonstrate that CoT-Rec shows potential for improving LLM-powered recommendations. The implementation is publicly available at this https URL. [Submitted on 19 Feb 2025 (v1), last revised 18 Apr 2025 (this version, v2)]

PennyLang: Pioneering LLM-Based Quantum Code Generation with a Novel PennyLane-Centric Dataset
Abdul Basit, Nouhaila Innan, Haider Asif, Minghao Shao, Muhammad Kashif, Alberto Marchisio, Muhammad Shafique
Large Language Models (LLMs) offer remarkable capabilities in code generation, natural language processing, and domain-specific reasoning. However, their application in quantum software development remains underexplored, particularly for PennyLane-a leading framework for hybrid quantum-classical computing. To address this gap, we introduce a novel, high-quality dataset comprising 3,347 PennyLane-specific quantum code samples and contextual descriptions, specifically curated to support LLM training and fine-tuning for quantum code assistance. Our contributions are threefold: (1) the automatic construction and open-source release of a comprehensive PennyLane dataset derived from textbooks, official documentation, and open-source repositories; (2) a structured methodology for data curation, annotation, and formatting to enhance LLM usability and relevance; and (3) a rigorous evaluation of code generation capabilities using both baseline Retrieval-Augmented Generation (RAG) and a GraphRAG-enhanced pipeline. Using the PennyLang framework, we demonstrate that GraphRAG, when applied to a GPT-4o Mini model, substantially outperforms standard prompting and baseline RAG. Accuracy improves from 20.5% (without RAG) to 58.2% with GraphRAG, showcasing its effectiveness in reducing hallucinations and improving code correctness in quantum programming tasks. Compared to prior efforts focused largely on Qiskit, our work expands LLM-based assistance to the PennyLane ecosystem, contributing practical tools and reproducible methodologies for advancing AI-assisted quantum software development. [Submitted on 4 Mar 2025 (v1), last revised 18 Apr 2025 (this version, v2)]

ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation
Zhicheng Lee, Shulin Cao, Jinxin Liu, Jiajie Zhang, Weichuan Liu, Xiaoyin Che, Lei Hou, Juanzi Li
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy. While recent works equip reinforcement learning (RL)-based LRMs with retrieval capabilities, they suffer from overthinking and lack robustness in reasoning, reducing their effectiveness in question answering (QA) tasks. To address this, we propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations. Our solution includes a novel data construction framework with an upper bound on the reasoning chain length. Specifically, we first leverage an LRM to generate deliberate thinking, then select an action from a predefined action space (Search and Finish). For Search action, a query is executed against the RAG engine, where the result is returned as observation to guide reasoning steps later. This process iterates until a Finish action is chosen. Benefiting from ReaRAG's strong reasoning capabilities, our approach outperforms existing baselines on multi-hop QA. Further analysis highlights its strong reflective ability to recognize errors and refine its reasoning trajectory. Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG). [Submitted on 27 Mar 2025 (v1), last revised 18 Apr 2025 (this version, v2)]

NLG
Adaptive Layer-skipping in Pre-trained LLMs

Xuan Luo, Weizhi Wang, Xifeng Yan
Various layer-skipping methods have been proposed to accelerate token generation in large language models (LLMs). However, they have overlooked a fundamental question: How do computational demands vary across the generation of different tokens? In this work, we introduce FlexiDepth, a method that dynamically adjusts the number of Transformer layers used in text generation. By incorporating a plug-in router and adapter, FlexiDepth enables adaptive layer-skipping in LLMs without modifying their original parameters. Introducing FlexiDepth to Llama-3-8B model achieves layer skipping of 8 layers out of 32, and meanwhile maintains the full 100\% benchmark performance. Experimental results with FlexiDepth demonstrate that computational demands in LLMs significantly vary based on token type. Specifically, generating repetitive tokens or fixed phrases requires fewer layers, whereas producing tokens involving computation or high uncertainty requires more layers. Interestingly, this adaptive allocation pattern aligns with human intuition. To advance research in this area, we open sourced FlexiDepth and a dataset documenting FlexiDepth's layer allocation patterns for future exploration. [Submitted on 31 Mar 2025 (v1), last revised 17 Apr 2025 (this version, v2)]

Multimodal
Multi-modal Knowledge Graph Generation with Semantics-enriched Prompts
Yajing Xu, Zhiqiang Liu, Jiaoyan Chen, Mingchen Tu, Zhuo Chen, Jeff Z. Pan, Yichi Zhang, Yushan Zhu, Wen Zhang, Huajun Chen
Multi-modal Knowledge Graphs (MMKGs) have been widely applied across various domains for knowledge representation. However, the existing MMKGs are significantly fewer than required, and their construction faces numerous challenges, particularly in ensuring the selection of high-quality, contextually relevant images for knowledge graph enrichment. To address these challenges, we present a framework for constructing MMKGs from conventional KGs. Furthermore, to generate higher-quality images that are more relevant to the context in the given knowledge graph, we designed a neighbor selection method called Visualizable Structural Neighbor Selection (VSNS). This method consists of two modules: Visualizable Neighbor Selection (VNS) and Structural Neighbor Selection (SNS). The VNS module filters relations that are difficult to visualize, while the SNS module selects neighbors that most effectively capture the structural characteristics of the entity. To evaluate the quality of the generated images, we performed qualitative and quantitative evaluations on two datasets, MKG-Y and DB15K. The experimental results indicate that using the VSNS method to select neighbors results in higher-quality images that are more relevant to the knowledge graph. [Submitted on 18 Apr 2025]

Building Trustworthy Multimodal AI: A Review of Fairness, Transparency, and Ethics in Vision-Language Tasks
Mohammad Saleha, Azadeh Tabatabaeib
Objective: This review explores the trustworthiness of multimodal artificial intelligence (AI) systems, specifically focusing on vision-language tasks. It addresses critical challenges related to fairness, transparency, and ethical implications in these systems, providing a comparative analysis of key tasks such as Visual Question Answering (VQA), image captioning, and visual dialogue. Background: Multimodal models, particularly vision-language models, enhance artificial intelligence (AI) capabilities by integrating visual and textual data, mimicking human learning processes. Despite significant advancements, the trustworthiness of these models remains a crucial concern, particularly as AI systems increasingly confront issues regarding fairness, transparency, and ethics. Methods: This review examines research conducted from 2017 to 2024 focusing on forenamed core vision-language tasks. It employs a comparative approach to analyze these tasks through the lens of trustworthiness, underlining fairness, explainability, and ethics. This study synthesizes findings from recent literature to identify trends, challenges, and state-of-the-art solutions. Results: Several key findings were highlighted. Transparency: Explainability of vision language tasks is important for user trust. Techniques, such as attention maps and gradient-based methods, have successfully addressed this issue. Fairness: Bias mitigation in VQA and visual dialogue systems is essential for ensuring unbiased outcomes across diverse demographic groups. Ethical Implications: Addressing biases in multilingual models and ensuring ethical data handling is critical for the responsible deployment of vision-language systems. Conclusion: This study underscores the importance of integrating fairness, transparency, and ethical considerations in developing vision-language models within a unified framework. [Submitted on 14 Apr 2025]

On the Feasibility of Using MultiModal LLMs to Execute AR Social Engineering Attacks
Ting Bi, Chenghang Ye, Zheyu Yang, Ziyi Zhou, Cui Tang, Jun Zhang, Zui Tao, Kailong Wang, Liting Zhou, Yang Yang, Tianlong Yu
Augmented Reality (AR) and Multimodal Large Language Models (LLMs) are rapidly evolving, providing unprecedented capabilities for human-computer interaction. However, their integration introduces a new attack surface for social engineering. In this paper, we systematically investigate the feasibility of orchestrating AR-driven Social Engineering attacks using Multimodal LLM for the first time, via our proposed SEAR framework, which operates through three key phases: (1) AR-based social context synthesis, which fuses Multimodal inputs (visual, auditory and environmental cues); (2) role-based Multimodal RAG (Retrieval-Augmented Generation), which dynamically retrieves and integrates contextual data while preserving character differentiation; and (3) ReInteract social engineering agents, which execute adaptive multiphase attack strategies through inference interaction loops. To verify SEAR, we conducted an IRB-approved study with 60 participants in three experimental configurations (unassisted, AR+LLM, and full SEAR pipeline) compiling a new dataset of 180 annotated conversations in simulated social scenarios. Our results show that SEAR is highly effective at eliciting high-risk behaviors (e.g., 93.3% of participants susceptible to email phishing). The framework was particularly effective in building trust, with 85% of targets willing to accept an attacker's call after an interaction. Also, we identified notable limitations such as ``occasionally artificial'' due to perceived authenticity gaps. This work provides proof-of-concept for AR-LLM driven social engineering attacks and insights for developing defensive countermeasures against next-generation augmented reality threats. [Submitted on 16 Apr 2025]

Mirror: Multimodal Cognitive Reframing Therapy for Rolling with Resistance
Subin Kim, Hoonrae Kim, Jihyun Lee, Yejin Jeon, Gary Geunbae Lee
Recent studies have explored the use of large language models (LLMs) in psychotherapy; however, text-based cognitive behavioral therapy (CBT) models often struggle with client resistance, which can weaken therapeutic alliance. To address this, we propose a multimodal approach that incorporates nonverbal cues, allowing the AI therapist to better align its responses with the client's negative emotional state. Specifically, we introduce a new synthetic dataset, Multimodal Interactive Rolling with Resistance (Mirror), which is a novel synthetic dataset that pairs client statements with corresponding facial images. Using this dataset, we train baseline Vision-Language Models (VLMs) that can analyze facial cues, infer emotions, and generate empathetic responses to effectively manage resistance. They are then evaluated in terms of both the therapist's counseling skills and the strength of the therapeutic alliance in the presence of client resistance. Our results demonstrate that Mirror significantly enhances the AI therapist's ability to handle resistance, which outperforms existing text-based CBT approaches. [Submitted on 16 Apr 2025]

Harmony: A Unified Framework for Modality Incremental Learning
Yaguang Song, Xiaoshan Yang, Dongmei Jiang, Yaowei Wang, Changsheng Xu
Incremental learning aims to enable models to continuously acquire knowledge from evolving data streams while preserving previously learned capabilities. While current research predominantly focuses on unimodal incremental learning and multimodal incremental learning where the modalities are consistent, real-world scenarios often present data from entirely new modalities, posing additional challenges. This paper investigates the feasibility of developing a unified model capable of incremental learning across continuously evolving modal sequences. To this end, we introduce a novel paradigm called Modality Incremental Learning (MIL), where each learning stage involves data from distinct modalities. To address this task, we propose a novel framework named Harmony, designed to achieve modal alignment and knowledge retention, enabling the model to reduce the modal discrepancy and learn from a sequence of distinct modalities, ultimately completing tasks across multiple modalities within a unified framework. Our approach introduces the adaptive compatible feature modulation and cumulative modal bridging. Through constructing historical modal features and performing modal knowledge accumulation and alignment, the proposed components collaboratively bridge modal differences and maintain knowledge retention, even with solely unimodal data available at each learning this http URL components work in concert to establish effective modality connections and maintain knowledge retention, even when only unimodal data is available at each learning stage. Extensive experiments on the MIL task demonstrate that our proposed method significantly outperforms existing incremental learning methods, validating its effectiveness in MIL scenarios. [Submitted on 17 Apr 2025]

WildFireCan-MMD: A Multimodal dataset for Classification of User-generated Content During Wildfires in Canada
Braeden Sherritt, Isar Nejadgholi, Marzieh Amini
Rapid information access is vital during wildfires, yet traditional data sources are slow and costly. Social media offers real-time updates, but extracting relevant insights remains a challenge. We present WildFireCan-MMD, a new multimodal dataset of X posts from recent Canadian wildfires, annotated across 13 key themes. Evaluating both Vision Language Models and custom-trained classifiers, we show that while zero-shot prompting offers quick deployment, even simple trained models outperform them when labelled data is available, by up to 23%. Our findings highlight the enduring importance of tailored datasets and task-specific training. Importantly, such datasets should be localized, as disaster response requirements vary across regions and contexts. [Submitted on 17 Apr 2025]

Chain-of-Modality: Learning Manipulation Programs from Multimodal Human Videos with Vision-Language-Models
Chen Wang, Fei Xia, Wenhao Yu, Tingnan Zhang, Ruohan Zhang, C. Karen Liu, Li Fei-Fei, Jie Tan, Jacky Liang
Learning to perform manipulation tasks from human videos is a promising approach for teaching robots. However, many manipulation tasks require changing control parameters during task execution, such as force, which visual data alone cannot capture. In this work, we leverage sensing devices such as armbands that measure human muscle activities and microphones that record sound, to capture the details in the human manipulation process, and enable robots to extract task plans and control parameters to perform the same task. To achieve this, we introduce Chain-of-Modality (CoM), a prompting strategy that enables Vision Language Models to reason about multimodal human demonstration data -- videos coupled with muscle or audio signals. By progressively integrating information from each modality, CoM refines a task plan and generates detailed control parameters, enabling robots to perform manipulation tasks based on a single multimodal human video prompt. Our experiments show that CoM delivers a threefold improvement in accuracy for extracting task plans and control parameters compared to baselines, with strong generalization to new task setups and objects in real-world robot experiments. Videos and code are available at this https URL [Submitted on 17 Apr 2025]

Towards a Multi-Agent Vision-Language System for Zero-Shot Novel Hazardous Object Detection for Autonomous Driving Safety
Shashank Shriram, Srinivasa Perisetla, Aryan Keskar, Harsha Krishnaswamy, Tonko Emil Westerhof Bossen, Andreas Møgelmose, Ross Greer
Detecting anomalous hazards in visual data, particularly in video streams, is a critical challenge in autonomous driving. Existing models often struggle with unpredictable, out-of-label hazards due to their reliance on predefined object categories. In this paper, we propose a multimodal approach that integrates vision-language reasoning with zero-shot object detection to improve hazard identification and explanation. Our pipeline consists of a Vision-Language Model (VLM), a Large Language Model (LLM), in order to detect hazardous objects within a traffic scene. We refine object detection by incorporating OpenAI's CLIP model to match predicted hazards with bounding box annotations, improving localization accuracy. To assess model performance, we create a ground truth dataset by denoising and extending the foundational COOOL (Challenge-of-Out-of-Label) anomaly detection benchmark dataset with complete natural language descriptions for hazard annotations. We define a means of hazard detection and labeling evaluation on the extended dataset using cosine similarity. This evaluation considers the semantic similarity between the predicted hazard description and the annotated ground truth for each video. Additionally, we release a set of tools for structuring and managing large-scale hazard detection datasets. Our findings highlight the strengths and limitations of current vision-language-based approaches, offering insights into future improvements in autonomous hazard detection systems. Our models, scripts, and data can be found at this https URL [Submitted on 18 Apr 2025]

Ascribe New Dimensions to Scientific Data Visualization with VR
Daniela Ushizima, Guilherme Melo dos Santos, Zineb Sordo, Ronald Pandolfi, Jeffrey Donatelli
For over half a century, the computer mouse has been the primary tool for interacting with digital data, yet it remains a limiting factor in exploring complex, multi-scale scientific images. Traditional 2D visualization methods hinder intuitive analysis of inherently 3D structures. Virtual Reality (VR) offers a transformative alternative, providing immersive, interactive environments that enhance data comprehension. This article introduces ASCRIBE-VR, a VR platform of Autonomous Solutions for Computational Research with Immersive Browsing \& Exploration, which integrates AI-driven algorithms with scientific images. ASCRIBE-VR enables multimodal analysis, structural assessments, and immersive visualization, supporting scientific visualization of advanced datasets such as X-ray CT, Magnetic Resonance, and synthetic 3D imaging. Our VR tools, compatible with Meta Quest, can consume the output of our AI-based segmentation and iterative feedback processes to enable seamless exploration of large-scale 3D images. By merging AI-generated results with VR visualization, ASCRIBE-VR enhances scientific discovery, bridging the gap between computational analysis and human intuition in materials research, connecting human-in-the-loop with digital twins. [Submitted on 18 Apr 2025]

FocusNet: Transformer-enhanced Polyp Segmentation with Local and Pooling Attention
Jun Zeng, KC Santosh, Deepak Rajan Nayak, Thomas de Lange, Jonas Varkey, Tyler Berzin, Debesh Jha
Colonoscopy is vital in the early diagnosis of colorectal polyps. Regular screenings can effectively prevent benign polyps from progressing to CRC. While deep learning has made impressive strides in polyp segmentation, most existing models are trained on single-modality and single-center data, making them less effective in real-world clinical environments. To overcome these limitations, we propose FocusNet, a Transformer-enhanced focus attention network designed to improve polyp segmentation. FocusNet incorporates three essential modules: the Cross-semantic Interaction Decoder Module (CIDM) for generating coarse segmentation maps, the Detail Enhancement Module (DEM) for refining shallow features, and the Focus Attention Module (FAM), to balance local detail and global context through local and pooling attention mechanisms. We evaluate our model on PolypDB, a newly introduced dataset with multi-modality and multi-center data for building more reliable segmentation methods. Extensive experiments showed that FocusNet consistently outperforms existing state-of-the-art approaches with a high dice coefficients of 82.47% on the BLI modality, 88.46% on FICE, 92.04% on LCI, 82.09% on the NBI and 93.42% on WLI modality, demonstrating its accuracy and robustness across five different modalities. The source code for FocusNet is available at this https URL. [Submitted on 18 Apr 2025]

Lightweight LiDAR-Camera 3D Dynamic Object Detection and Multi-Class Trajectory Prediction
Yushen He, Lei Zhao, Tianchen Deng, Zipeng Fang, Weidong Chen
Service mobile robots are often required to avoid dynamic objects while performing their tasks, but they usually have only limited computational resources. So we present a lightweight multi-modal framework for 3D object detection and trajectory prediction. Our system synergistically integrates LiDAR and camera inputs to achieve real-time perception of pedestrians, vehicles, and riders in 3D space. The framework proposes two novel modules: 1) a Cross-Modal Deformable Transformer (CMDT) for object detection with high accuracy and acceptable amount of computation, and 2) a Reference Trajectory-based Multi-Class Transformer (RTMCT) for efficient and diverse trajectory prediction of mult-class objects with flexible trajectory lengths. Evaluations on the CODa benchmark demonstrate superior performance over existing methods across detection (+2.03% in mAP) and trajectory prediction (-0.408m in minADE5 of pedestrians) metrics. Remarkably, the system exhibits exceptional deployability - when implemented on a wheelchair robot with an entry-level NVIDIA 3060 GPU, it achieves real-time inference at 13.2 fps. To facilitate reproducibility and practical deployment, we release the related code of the method at this https URL and its ROS inference version at this https URL. [Submitted on 18 Apr 2025]

Exploring Multimodal Prompt for Visualization Authoring with Large Language Models
Zhen Wen, Luoxuan Weng, Yinghao Tang, Runjin Zhang, Yuxin Liu, Bo Pan, Minfeng Zhu, Wei Chen
Recent advances in large language models (LLMs) have shown great potential in automating the process of visualization authoring through simple natural language utterances. However, instructing LLMs using natural language is limited in precision and expressiveness for conveying visualization intent, leading to misinterpretation and time-consuming iterations. To address these limitations, we conduct an empirical study to understand how LLMs interpret ambiguous or incomplete text prompts in the context of visualization authoring, and the conditions making LLMs misinterpret user intent. Informed by the findings, we introduce visual prompts as a complementary input modality to text prompts, which help clarify user intent and improve LLMs' interpretation abilities. To explore the potential of multimodal prompting in visualization authoring, we design VisPilot, which enables users to easily create visualizations using multimodal prompts, including text, sketches, and direct manipulations on existing visualizations. Through two case studies and a controlled user study, we demonstrate that VisPilot provides a more intuitive way to create visualizations without affecting the overall task efficiency compared to text-only prompting approaches. Furthermore, we analyze the impact of text and visual prompts in different visualization tasks. Our findings highlight the importance of multimodal prompting in improving the usability of LLMs for visualization authoring. We discuss design implications for future visualization systems and provide insights into how multimodal prompts can enhance human-AI collaboration in creative visualization tasks. All materials are available at this https URL. [Submitted on 18 Apr 2025]

ProteinGPT: Multimodal LLM for Protein Property Prediction and Structure Understanding
Yijia Xiao, Edward Sun, Yiqiao Jin, Qifan Wang, Wei Wang
Understanding biological processes, drug development, and biotechnological advancements requires a detailed analysis of protein structures and functions, a task that is inherently complex and time-consuming in traditional protein research. To streamline this process, we introduce ProteinGPT, a state-of-the-art multimodal large language model for proteins that enables users to upload protein sequences and/or structures for comprehensive analysis and responsive inquiries. ProteinGPT integrates protein sequence and structure encoders with linear projection layers to ensure precise representation adaptation and leverages a large language model (LLM) to generate accurate, contextually relevant responses. To train ProteinGPT, we constructed a large-scale dataset of 132,092 proteins, each annotated with 20-30 property tags and 5-10 QA pairs per protein, and optimized the instruction-tuning process using GPT-4o. Experiments demonstrate that ProteinGPT effectively generates informative responses to protein-related questions, achieving high performance on both semantic and lexical metrics and significantly outperforming baseline models and general-purpose LLMs in understanding and responding to protein-related queries. Our code and data are available at this https URL. [Submitted on 21 Aug 2024 (v1), last revised 17 Apr 2025 (this version, v2)]

Does Spatial Cognition Emerge in Frontier Models?
Santhosh Kumar Ramakrishnan, Erik Wijmans, Philipp Kraehenbuehl, Vladlen Koltun
Not yet. We present SPACE, a benchmark that systematically evaluates spatial cognition in frontier models. Our benchmark builds on decades of research in cognitive science. It evaluates large-scale mapping abilities that are brought to bear when an organism traverses physical environments, smaller-scale reasoning about object shapes and layouts, and cognitive infrastructure such as spatial attention and memory. For many tasks, we instantiate parallel presentations via text and images, allowing us to benchmark both large language models and large multimodal models. Results suggest that contemporary frontier models fall short of the spatial intelligence of animals, performing near chance level on a number of classic tests of animal cognition. Code and data are available: this https URL [Submitted on 9 Oct 2024 (v1), last revised 18 Apr 2025 (this version, v2)]

Understanding Epistemic Language with a Language-augmented Bayesian Theory of Mind
Lance Ying, Tan Zhi-Xuan, Lionel Wong, Vikash Mansinghka, Joshua B. Tenenbaum
How do people understand and evaluate claims about others' beliefs, even though these beliefs cannot be directly observed? In this paper, we introduce a cognitive model of epistemic language interpretation, grounded in Bayesian inferences about other agents' goals, beliefs, and intentions: a language-augmented Bayesian theory-of-mind (LaBToM). By translating natural language into an epistemic ``language-of-thought'' with grammar-constrained LLM decoding, then evaluating these translations against the inferences produced by inverting a generative model of rational action and perception, LaBToM captures graded plausibility judgments of epistemic claims. We validate our model in an experiment where participants watch an agent navigate a maze to find keys hidden in boxes needed to reach their goal, then rate sentences about the agent's beliefs. In contrast with multimodal LLMs (GPT-4o, Gemini Pro) and ablated models, our model correlates highly with human judgments for a wide range of expressions, including modal language, uncertainty expressions, knowledge claims, likelihood comparisons, and attributions of false belief. [Submitted on 21 Aug 2024 (v1), last revised 18 Apr 2025 (this version, v2)]

BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Hongruixuan Chen, Jian Song, Olivier Dietrich, Clifford Broni-Bediako, Weihao Xuan, Junjue Wang, Xinlei Shao, Yimin Wei, Junshi Xia, Cuiling Lan, Konrad Schindler, Naoto Yokoya
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 14 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at this https URL. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest. [Submitted on 10 Jan 2025 (v1), last revised 18 Apr 2025 (this version, v3)]

A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
Siyuan Mu, Sen Lin
Artificial intelligence (AI) has achieved astonishing successes in many domains, especially with the recent breakthroughs in the development of foundational large models. These large models, leveraging their extensive training data, provide versatile solutions for a wide range of downstream tasks. However, as modern datasets become increasingly diverse and complex, the development of large AI models faces two major challenges: (1) the enormous consumption of computational resources and deployment difficulties, and (2) the difficulty in fitting heterogeneous and complex data, which limits the usability of the models. Mixture of Experts (MoE) models has recently attracted much attention in addressing these challenges, by dynamically selecting and activating the most relevant sub-models to process input data. It has been shown that MoEs can significantly improve model performance and efficiency with fewer resources, particularly excelling in handling large-scale, multimodal data. Given the tremendous potential MoE has demonstrated across various domains, it is urgent to provide a comprehensive summary of recent advancements of MoEs in many important fields. Existing surveys on MoE have their limitations, e.g., being outdated or lacking discussion on certain key areas, and we aim to address these gaps. In this paper, we first introduce the basic design of MoE, including gating functions, expert networks, routing mechanisms, training strategies, and system design. We then explore the algorithm design of MoE in important machine learning paradigms such as continual learning, meta-learning, multi-task learning, and reinforcement learning. Additionally, we summarize theoretical studies aimed at understanding MoE and review its applications in computer vision and natural language processing. Finally, we discuss promising future research directions. [Submitted on 10 Mar 2025 (v1), last revised 18 Apr 2025 (this version, v3)]

The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
Hao Yin, Guangzong Si, Zilei Wang
Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs. [Submitted on 14 Apr 2025 (v1), last revised 18 Apr 2025 (this version, v2)]

Semantic Matters: Multimodal Features for Affective Analysis
Tobias Hallmen, Robin-Nico Kampa, Fabian Deuser, Norbert Oswald, Elisabeth André
In this study, we present our methodology for two tasks: the Emotional Mimicry Intensity (EMI) Estimation Challenge and the Behavioural Ambivalence/Hesitancy (BAH) Recognition Challenge, both conducted as part of the 8th Workshop and Competition on Affective & Behavior Analysis in-the-wild. We utilize a Wav2Vec 2.0 model pre-trained on a large podcast dataset to extract various audio features, capturing both linguistic and paralinguistic information. Our approach incorporates a valence-arousal-dominance (VAD) module derived from Wav2Vec 2.0, a BERT text encoder, and a vision transformer (ViT) with predictions subsequently processed through a long short-term memory (LSTM) architecture or a convolution-like method for temporal modeling. We integrate the textual and visual modality into our analysis, recognizing that semantic content provides valuable contextual cues and underscoring that the meaning of speech often conveys more critical insights than its acoustic counterpart alone. Fusing in the vision modality helps in some cases to interpret the textual modality more precisely. This combined approach results in significant performance improvements, achieving in EMI $\rho_{\text{TEST}} = 0.706$ and in BAH $F1_{\text{TEST}} = 0.702$, securing first place in the EMI challenge and second place in the BAH challenge. [Submitted on 16 Mar 2025 (v1), last revised 18 Apr 2025 (this version, v2)]

Large Language Model-Based Knowledge Graph System Construction for Sustainable Development Goals: An AI-Based Speculative Design Perspective
Yi-De Lin, Guan-Ze Liao
From 2000 to 2015, the UN's Millennium Development Goals guided global priorities. The subsequent Sustainable Development Goals (SDGs) adopted a more dynamic approach, with annual indicator updates. As 2030 nears and progress lags, innovative acceleration strategies are critical. This study develops an AI-powered knowledge graph system to analyze SDG interconnections, discover potential new goals, and visualize them online. Using official SDG texts, Elsevier's keyword dataset, and 1,127 TED Talk transcripts (2020.01-2024.04), a pilot on 269 talks from 2023 applies AI-speculative design, large language models, and retrieval-augmented generation. Key findings include: (1) Heatmap analysis reveals strong associations between Goal 10 and Goal 16, and minimal coverage of Goal 6. (2) In the knowledge graph, simulated dialogue over time reveals new central nodes, showing how richer data supports divergent thinking and goal clarity. (3) Six potential new goals are proposed, centered on equity, resilience, and technology-driven inclusion. This speculative-AI framework offers fresh insights for policymakers and lays groundwork for future multimodal and cross-system SDG applications. [Submitted on 5 Apr 2025 (v1), last revised 18 Apr 2025 (this version, v2)]

Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Yundi Zhang, Paul Hager, Che Liu, Suprosanna Shit, Chen Chen, Daniel Rueckert, Jiazhen Pan
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis. [Submitted on 17 Apr 2025 (v1), last revised 18 Apr 2025 (this version, v2)]

2025-04-20
Creative
ZeroSumEval: Scaling LLM Evaluation with Inter-Model Competition
Haidar Khan, Hisham A. Alyahya, Yazeed Alnumay, M Saiful Bari, Bülent Yener
Evaluating the capabilities of Large Language Models (LLMs) has traditionally relied on static benchmark datasets, human assessments, or model-based evaluations - methods that often suffer from overfitting, high costs, and biases. ZeroSumEval is a novel competition-based evaluation protocol that leverages zero-sum games to assess LLMs with dynamic benchmarks that resist saturation. ZeroSumEval encompasses a diverse suite of games, including security challenges (PyJail), classic games (Chess, Liar's Dice, Poker), knowledge tests (MathQuiz), and persuasion challenges (Gandalf, Debate). These games are designed to evaluate a range of AI capabilities such as strategic reasoning, planning, knowledge application, and creativity. Building upon recent studies that highlight the effectiveness of game-based evaluations for LLMs, ZeroSumEval enhances these approaches by providing a standardized and extensible framework. To demonstrate this, we conduct extensive experiments with >7000 simulations across 7 games and 13 models. Our results show that while frontier models from the GPT and Claude families can play common games and answer questions, they struggle to play games that require creating novel and challenging questions. We also observe that models cannot reliably jailbreak each other and fail generally at tasks requiring creativity. We release our code at this https URL. [Submitted on 17 Apr 2025]

Has the Creativity of Large-Language Models peaked? An analysis of inter- and intra-LLM variability
Jennifer Haase, Paul H. P. Hanel, Sebastian Pokutta
Following the widespread adoption of ChatGPT in early 2023, numerous studies reported that large language models (LLMs) can match or even surpass human performance in creative tasks. However, it remains unclear whether LLMs have become more creative over time, and how consistent their creative output is. In this study, we evaluated 14 widely used LLMs -- including GPT-4, Claude, Llama, Grok, Mistral, and DeepSeek -- across two validated creativity assessments: the Divergent Association Task (DAT) and the Alternative Uses Task (AUT). Contrary to expectations, we found no evidence of increased creative performance over the past 18-24 months, with GPT-4 performing worse than in previous studies. For the more widely used AUT, all models performed on average better than the average human, with GPT-4o and o3-mini performing best. However, only 0.28% of LLM-generated responses reached the top 10% of human creativity benchmarks. Beyond inter-model differences, we document substantial intra-model variability: the same LLM, given the same prompt, can produce outputs ranging from below-average to original. This variability has important implications for both creativity research and practical applications. Ignoring such variability risks misjudging the creative potential of LLMs, either inflating or underestimating their capabilities. The choice of prompts affected LLMs differently. Our findings underscore the need for more nuanced evaluation frameworks and highlight the importance of model selection, prompt design, and repeated assessment when using Generative AI (GenAI) tools in creative contexts. [Submitted on 10 Apr 2025]

Co-Writing with AI, on Human Terms: Aligning Research with User Demands Across the Writing Process
Mohi Reza, Jeb Thomas-Mitchell, Peter Dushniku, Nathan Laundry, Joseph Jay Williams, Anastasia Kuzminykh
As generative AI tools like ChatGPT become integral to everyday writing, critical questions arise about how to preserve writers' sense of agency and ownership when using these tools. Yet, a systematic understanding of how AI assistance affects different aspects of the writing process - and how this shapes writers' agency - remains underexplored. To address this gap, we conducted a systematic review of 109 HCI papers using the PRISMA approach. From this literature, we identify four overarching design strategies for AI writing support: structured guidance, guided exploration, active co-writing, and critical feedback - mapped across the four key cognitive processes in writing: planning, translating, reviewing, and monitoring. We complement this analysis with interviews of 15 writers across diverse domains. Our findings reveal that writers' desired levels of AI intervention vary across the writing process: content-focused writers (e.g., academics) prioritize ownership during planning, while form-focused writers (e.g., creatives) value control over translating and reviewing. Writers' preferences are also shaped by contextual goals, values, and notions of originality and authorship. By examining when ownership matters, what writers want to own, and how AI interactions shape agency, we surface both alignment and gaps between research and user needs. Our findings offer actionable design guidance for developing human-centered writing tools for co-writing with AI, on human terms. [Submitted on 16 Apr 2025]

Evaluating the Diversity and Quality of LLM Generated Content
Alexander Shypula, Shuo Li, Botong Zhang, Vishakh Padmakumar, Kayo Yin, Osbert Bastani
Recent work suggests that preference-tuning techniques--including Reinforcement Learning from Human Preferences (RLHF) methods like PPO and GRPO, as well as alternatives like DPO--reduce diversity, creating a dilemma given that such models are widely deployed in applications requiring diverse outputs. To address this, we introduce a framework for measuring effective semantic diversity--diversity among outputs that meet quality thresholds--which better reflects the practical utility of large language models (LLMs). Using open-ended tasks that require no human intervention, we find counterintuitive results: although preference-tuned models--especially those trained via RL--exhibit reduced lexical and syntactic diversity, they produce greater effective semantic diversity than SFT or base models, not from increasing diversity among high-quality outputs, but from generating more high-quality outputs overall. We discover that preference tuning reduces syntactic diversity while preserving semantic diversity--revealing a distinction between diversity in form and diversity in content that traditional metrics often overlook. Our analysis further shows that smaller models are consistently more parameter-efficient at generating unique content within a fixed sampling budget, offering insights into the relationship between model scaling and diversity. These findings have important implications for applications that require diverse yet high-quality outputs, from creative assistance to synthetic data generation. [Submitted on 16 Apr 2025]

Probing and Inducing Combinational Creativity in Vision-Language Models
Yongqian Peng, Yuxi Ma, Mengmeng Wang, Yuxuan Wang, Yizhou Wang, Chi Zhang, Yixin Zhu, Zilong Zheng
The ability to combine existing concepts into novel ideas stands as a fundamental hallmark of human intelligence. Recent advances in Vision-Language Models (VLMs) like GPT-4V and DALLE-3 have sparked debate about whether their outputs reflect combinational creativity--defined by M. A. Boden (1998) as synthesizing novel ideas through combining existing concepts--or sophisticated pattern matching of training data. Drawing inspiration from cognitive science, we investigate the combinational creativity of VLMs from the lens of concept blending. We propose the Identification-Explanation-Implication (IEI) framework, which decomposes creative processes into three levels: identifying input spaces, extracting shared attributes, and deriving novel semantic implications. To validate this framework, we curate CreativeMashup, a high-quality dataset of 666 artist-generated visual mashups annotated according to the IEI framework. Through extensive experiments, we demonstrate that in comprehension tasks, best VLMs have surpassed average human performance while falling short of expert-level understanding; in generation tasks, incorporating our IEI framework into the generation pipeline significantly enhances the creative quality of VLMs outputs. Our findings establish both a theoretical foundation for evaluating artificial creativity and practical guidelines for improving creative generation in VLMs. [Submitted on 17 Apr 2025]

Reasoning
Towards Conversational AI for Human-Machine Collaborative MLOps
George Fatouros, Georgios Makridis, George Kousiouris, John Soldatos, Anargyros Tsadimas, Dimosthenis Kyriazis
This paper presents a Large Language Model (LLM) based conversational agent system designed to enhance human-machine collaboration in Machine Learning Operations (MLOps). We introduce the Swarm Agent, an extensible architecture that integrates specialized agents to create and manage ML workflows through natural language interactions. The system leverages a hierarchical, modular design incorporating a KubeFlow Pipelines (KFP) Agent for ML pipeline orchestration, a MinIO Agent for data management, and a Retrieval-Augmented Generation (RAG) Agent for domain-specific knowledge integration. Through iterative reasoning loops and context-aware processing, the system enables users with varying technical backgrounds to discover, execute, and monitor ML pipelines; manage datasets and artifacts; and access relevant documentation, all via intuitive conversational interfaces. Our approach addresses the accessibility gap in complex MLOps platforms like Kubeflow, making advanced ML tools broadly accessible while maintaining the flexibility to extend to other platforms. The paper describes the architecture, implementation details, and demonstrates how this conversational MLOps assistant reduces complexity and lowers barriers to entry for users across diverse technical skill levels. [Submitted on 16 Apr 2025]

Heuristic Recognition and Rapid Response to Unfamiliar Events Outside of Agent Design Scope
Robert E. Wray, Steven J. Jones, John E. Laird
Regardless of past learning, an agent in an open world will face unfamiliar situations and events outside of prior experience, existing models, or policies. Further, the agent will sometimes lack relevant knowledge and/or sufficient time to assess the situation, generate and evaluate options, and pursue a robustly considered course of action. How can an agent respond reasonably to situations that are outside of its original design scope? How can it recognize such situations sufficiently quickly and reliably to determine reasonable, adaptive courses of action? We identify key characteristics needed for solutions, evaluate the state-of-the-art by these requirements, and outline a proposed, novel approach that combines domain-general meta-knowledge (in the form of appraisals inspired by human cognition) and metareasoning. It has the potential to provide fast, adaptive responses to unfamiliar situations, more fully meeting the performance characteristics required for open-world, general agents. [Submitted on 16 Apr 2025]

ZeroSumEval: Scaling LLM Evaluation with Inter-Model Competition
Haidar Khan, Hisham A. Alyahya, Yazeed Alnumay, M Saiful Bari, Bülent Yener
Evaluating the capabilities of Large Language Models (LLMs) has traditionally relied on static benchmark datasets, human assessments, or model-based evaluations - methods that often suffer from overfitting, high costs, and biases. ZeroSumEval is a novel competition-based evaluation protocol that leverages zero-sum games to assess LLMs with dynamic benchmarks that resist saturation. ZeroSumEval encompasses a diverse suite of games, including security challenges (PyJail), classic games (Chess, Liar's Dice, Poker), knowledge tests (MathQuiz), and persuasion challenges (Gandalf, Debate). These games are designed to evaluate a range of AI capabilities such as strategic reasoning, planning, knowledge application, and creativity. Building upon recent studies that highlight the effectiveness of game-based evaluations for LLMs, ZeroSumEval enhances these approaches by providing a standardized and extensible framework. To demonstrate this, we conduct extensive experiments with >7000 simulations across 7 games and 13 models. Our results show that while frontier models from the GPT and Claude families can play common games and answer questions, they struggle to play games that require creating novel and challenging questions. We also observe that models cannot reliably jailbreak each other and fail generally at tasks requiring creativity. We release our code at this https URL. [Submitted on 17 Apr 2025]

Embodied-R: Collaborative Framework for Activating Embodied Spatial Reasoning in Foundation Models via Reinforcement Learning
Baining Zhao, Ziyou Wang, Jianjie Fang, Chen Gao, Fanhang Man, Jinqiang Cui, Xin Wang, Xinlei Chen, Yong Li, Wenwu Zhu
Humans can perceive and reason about spatial relationships from sequential visual observations, such as egocentric video streams. However, how pretrained models acquire such abilities, especially high-level reasoning, remains unclear. This paper introduces Embodied-R, a collaborative framework combining large-scale Vision-Language Models (VLMs) for perception and small-scale Language Models (LMs) for reasoning. Using Reinforcement Learning (RL) with a novel reward system considering think-answer logical consistency, the model achieves slow-thinking capabilities with limited computational resources. After training on only 5k embodied video samples, Embodied-R with a 3B LM matches state-of-the-art multimodal reasoning models (OpenAI-o1, Gemini-2.5-pro) on both in-distribution and out-of-distribution embodied spatial reasoning tasks. Embodied-R also exhibits emergent thinking patterns such as systematic analysis and contextual integration. We further explore research questions including response length, training on VLM, strategies for reward design, and differences in model generalization after SFT (Supervised Fine-Tuning) and RL training. [Submitted on 17 Apr 2025]

Antidistillation Sampling
Yash Savani, Asher Trockman, Zhili Feng, Avi Schwarzschild, Alexander Robey, Marc Finzi, J. Zico Kolter
Frontier models that generate extended reasoning traces inadvertently produce rich token sequences that can facilitate model distillation. Recognizing this vulnerability, model owners may seek sampling strategies that limit the effectiveness of distillation without compromising model performance. \emph{Antidistillation sampling} provides exactly this capability. By strategically modifying a model's next-token probability distribution, antidistillation sampling poisons reasoning traces, rendering them significantly less effective for distillation while preserving the model's practical utility. For further details, see this https URL. [Submitted on 17 Apr 2025]

Sleep-time Compute: Beyond Inference Scaling at Test-time
Kevin Lin, Charlie Snell, Yu Wang, Charles Packer, Sarah Wooders, Ion Stoica, Joseph E. Gonzalez
Scaling test-time compute has emerged as a key ingredient for enabling large language models (LLMs) to solve difficult problems, but comes with high latency and inference cost. We introduce sleep-time compute, which allows models to "think" offline about contexts before queries are presented: by anticipating what queries users might ask and pre-computing useful quantities, we can significantly reduce the compute requirements at test-time. To demonstrate the efficacy of our method, we create modified versions of two reasoning tasks - Stateful GSM-Symbolic and Stateful AIME. We find that sleep-time compute can reduce the amount of test-time compute needed to achieve the same accuracy by ~ 5x on Stateful GSM-Symbolic and Stateful AIME and that by scaling sleep-time compute we can further increase accuracy by up to 13% on Stateful GSM-Symbolic and 18% on Stateful AIME. Furthermore, we introduce Multi-Query GSM-Symbolic, which extends GSM-Symbolic by including multiple related queries per context. By amortizing sleep-time compute across related queries about the same context using Multi-Query GSM-Symbolic, we can decrease the average cost per query by 2.5x. We then conduct additional analysis to understand when sleep-time compute is most effective, finding the predictability of the user query to be well correlated with the efficacy of sleep-time compute. Finally, we conduct a case-study of applying sleep-time compute to a realistic agentic SWE task. [Submitted on 17 Apr 2025]

Data Metabolism: An Efficient Data Design Schema For Vision Language Model
Jingyuan Zhang, Hongzhi Zhang, Zhou Haonan, Chenxi Sun, Xingguang ji, Jiakang Wang, Fanheng Kong, Yahui Liu, Qi Wang, Fuzheng Zhang
Data curation plays a crucial role in training powerful Visual Language Models (VLMs). In this work, we introduce the concept of Data Metabolism and present our data-centric framework to build VLMs throughout the development lifecycle. Starting from a standard model architecture, we discuss and provide insights into two crucial development steps: data curation and iteration, forming a closed-loop system that continuously improves model performance. We show a detailed codebook on how to process existing massive datasets and build user-specific data flywheel. As a demonstration, we release a VLM, named Capybara-VL, which excels in typical multimodal tasks (e.g. , visual question answering, scientific reasoning, and text-rich tasks). Despite its relatively compact size, Capybara-VL surpasses several open-source models that are up to 10 times larger in size. Moreover, it achieves results that are on par with those of several leading proprietary models, demonstrating its remarkable competitiveness. These results highlight the power of our data-centric framework and the potential of training smaller and more efficient VLMs. [Submitted on 10 Apr 2025]

Speculative Thinking: Enhancing Small-Model Reasoning with Large Model Guidance at Inference Time
Wang Yang, Xiang Yue, Vipin Chaudhary, Xiaotian Han
Recent advances leverage post-training to enhance model reasoning performance, which typically requires costly training pipelines and still suffers from inefficient, overly lengthy outputs. We introduce Speculative Thinking, a training-free framework that enables large reasoning models to guide smaller ones during inference at the reasoning level, distinct from speculative decoding, which operates at the token level. Our approach is based on two observations: (1) reasoning-supportive tokens such as "wait" frequently appear after structural delimiters like "\n\n", serving as signals for reflection or continuation; and (2) larger models exhibit stronger control over reflective behavior, reducing unnecessary backtracking while improving reasoning quality. By strategically delegating reflective steps to a more capable model, our method significantly boosts the reasoning accuracy of reasoning models while shortening their output. With the assistance of the 32B reasoning model, the 1.5B model's accuracy on MATH500 increases from 83.2% to 89.4%, marking a substantial improvement of 6.2%. Simultaneously, the average output length is reduced from 5439 tokens to 4583 tokens, representing a 15.7% decrease. Moreover, when applied to a non-reasoning model (Qwen-2.5-7B-Instruct), our framework boosts its accuracy from 74.0% to 81.8% on the same benchmark, achieving a relative improvement of 7.8%. [Submitted on 12 Apr 2025]

HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation
Pei Liu, Xin Liu, Ruoyu Yao, Junming Liu, Siyuan Meng, Ding Wang, Jun Ma
While Retrieval-Augmented Generation (RAG) augments Large Language Models (LLMs) with external knowledge, conventional single-agent RAG remains fundamentally limited in resolving complex queries demanding coordinated reasoning across heterogeneous data ecosystems. We present HM-RAG, a novel Hierarchical Multi-agent Multimodal RAG framework that pioneers collaborative intelligence for dynamic knowledge synthesis across structured, unstructured, and graph-based data. The framework is composed of three-tiered architecture with specialized agents: a Decomposition Agent that dissects complex queries into contextually coherent sub-tasks via semantic-aware query rewriting and schema-guided context augmentation; Multi-source Retrieval Agents that carry out parallel, modality-specific retrieval using plug-and-play modules designed for vector, graph, and web-based databases; and a Decision Agent that uses consistency voting to integrate multi-source answers and resolve discrepancies in retrieval results through Expert Model Refinement. This architecture attains comprehensive query understanding by combining textual, graph-relational, and web-derived evidence, resulting in a remarkable 12.95% improvement in answer accuracy and a 3.56% boost in question classification accuracy over baseline RAG systems on the ScienceQA and CrisisMMD benchmarks. Notably, HM-RAG establishes state-of-the-art results in zero-shot settings on both datasets. Its modular architecture ensures seamless integration of new data modalities while maintaining strict data governance, marking a significant advancement in addressing the critical challenges of multimodal reasoning and knowledge synthesis in RAG systems. Code is available at this https URL. [Submitted on 13 Apr 2025]

Mathematical Capabilities of Large Language Models in Finnish Matriculation Examination
Mika Setälä, Pieta Sikström, Ville Heilala, Tommi Kärkkäinen
Large language models (LLMs) have shown increasing promise in educational settings, yet their mathematical reasoning has been considered evolving. This study evaluates the mathematical capabilities of various LLMs using the Finnish matriculation examination, a high-stakes digital test for upper secondary education. Initial tests yielded moderate performance corresponding to mid-range grades, but later evaluations demonstrated substantial improvements as the language models evolved. Remarkably, some models achieved near-perfect or perfect scores, matching top student performance and qualifying for university admission. Our findings highlight the rapid advances in the mathematical proficiency of LLMs and illustrate their potential to also support educational assessments at scale. [Submitted on 15 Apr 2025]

A Large-Language Model Framework for Relative Timeline Extraction from PubMed Case Reports
Jing Wang, Jeremy C Weiss
Timing of clinical events is central to characterization of patient trajectories, enabling analyses such as process tracing, forecasting, and causal reasoning. However, structured electronic health records capture few data elements critical to these tasks, while clinical reports lack temporal localization of events in structured form. We present a system that transforms case reports into textual time series-structured pairs of textual events and timestamps. We contrast manual and large language model (LLM) annotations (n=320 and n=390 respectively) of ten randomly-sampled PubMed open-access (PMOA) case reports (N=152,974) and assess inter-LLM agreement (n=3,103; N=93). We find that the LLM models have moderate event recall(O1-preview: 0.80) but high temporal concordance among identified events (O1-preview: 0.95). By establishing the task, annotation, and assessment systems, and by demonstrating high concordance, this work may serve as a benchmark for leveraging the PMOA corpus for temporal analytics. [Submitted on 15 Apr 2025]

Don't Just Translate, Agitate: Using Large Language Models as Devil's Advocates for AI Explanations
Ashley Suh, Kenneth Alperin, Harry Li, Steven R Gomez
This position paper highlights a growing trend in Explainable AI (XAI) research where Large Language Models (LLMs) are used to translate outputs from explainability techniques, like feature-attribution weights, into a natural language explanation. While this approach may improve accessibility or readability for users, recent findings suggest that translating into human-like explanations does not necessarily enhance user understanding and may instead lead to overreliance on AI systems. When LLMs summarize XAI outputs without surfacing model limitations, uncertainties, or inconsistencies, they risk reinforcing the illusion of interpretability rather than fostering meaningful transparency. We argue that - instead of merely translating XAI outputs - LLMs should serve as constructive agitators, or devil's advocates, whose role is to actively interrogate AI explanations by presenting alternative interpretations, potential biases, training data limitations, and cases where the model's reasoning may break down. In this role, LLMs can facilitate users in engaging critically with AI systems and generated explanations, with the potential to reduce overreliance caused by misinterpreted or specious explanations. [Submitted on 16 Apr 2025]

Multimodal LLM Augmented Reasoning for Interpretable Visual Perception Analysis
Shravan Chaudhari, Trilokya Akula, Yoon Kim, Tom Blake
In this paper, we advance the study of AI-augmented reasoning in the context of Human-Computer Interaction (HCI), psychology and cognitive science, focusing on the critical task of visual perception. Specifically, we investigate the applicability of Multimodal Large Language Models (MLLMs) in this domain. To this end, we leverage established principles and explanations from psychology and cognitive science related to complexity in human visual perception. We use them as guiding principles for the MLLMs to compare and interprete visual content. Our study aims to benchmark MLLMs across various explainability principles relevant to visual perception. Unlike recent approaches that primarily employ advanced deep learning models to predict complexity metrics from visual content, our work does not seek to develop a mere new predictive model. Instead, we propose a novel annotation-free analytical framework to assess utility of MLLMs as cognitive assistants for HCI tasks, using visual perception as a case study. The primary goal is to pave the way for principled study in quantifying and evaluating the interpretability of MLLMs for applications in improving human reasoning capability and uncovering biases in existing perception datasets annotated by humans. [Submitted on 16 Apr 2025]

Memorization vs. Reasoning: Updating LLMs with New Knowledge
Aochong Oliver Li, Tanya Goyal
Large language models (LLMs) encode vast amounts of pre-trained knowledge in their parameters, but updating them as real-world information evolves remains a challenge. Existing methodologies and benchmarks primarily target entity substitutions, failing to capture the full breadth of complex real-world dynamics. In this paper, we introduce Knowledge Update Playground (KUP), an automatic pipeline for simulating realistic knowledge updates reflected in an evidence corpora. KUP's evaluation framework includes direct and indirect probes to both test memorization of updated facts and reasoning over them, for any update learning methods. Next, we present a lightweight method called memory conditioned training (MCT), which conditions tokens in the update corpus on self-generated "memory" tokens during training. Our strategy encourages LLMs to surface and reason over newly memorized knowledge at inference. Our results on two strong LLMs show that (1) KUP benchmark is highly challenging, with the best CPT models achieving $<2\%$ in indirect probing setting (reasoning) and (2) MCT training significantly outperforms prior continued pre-training (CPT) baselines, improving direct probing (memorization) results by up to $25.4\%$. [Submitted on 16 Apr 2025]

Scaling Instruction-Tuned LLMs to Million-Token Contexts via Hierarchical Synthetic Data Generation
Linda He, Jue Wang, Maurice Weber, Shang Zhu, Ben Athiwaratkun, Ce Zhang
Large Language Models (LLMs) struggle with long-context reasoning, not only due to the quadratic scaling of computational complexity with sequence length but also because of the scarcity and expense of annotating long-context data. There has been barely any open-source work that systematically ablates long-context data, nor is there any openly available instruction tuning dataset with contexts surpassing 100K tokens. To bridge this gap, we introduce a novel post-training synthetic data generation strategy designed to efficiently extend the context window of LLMs while preserving their general task performance. Our approach scalably extends to arbitrarily long context lengths, unconstrained by the length of available real-world data, which effectively addresses the scarcity of raw long-context data. Through a step-by-step rotary position embedding (RoPE) scaling training strategy, we demonstrate that our model, with a context length of up to 1M tokens, performs well on the RULER benchmark and InfiniteBench and maintains robust performance on general language tasks. [Submitted on 17 Apr 2025]

Pandora: A Code-Driven Large Language Model Agent for Unified Reasoning Across Diverse Structured Knowledge
Yongrui Chen, Junhao He, Linbo Fu, Shenyu Zhang, Rihui Jin, Xinbang Dai, Jiaqi Li, Dehai Min, Nan Hu, Yuxin Zhang, Guilin Qi, Yi Huang, Tongtong Wu
Unified Structured Knowledge Reasoning (USKR) aims to answer natural language questions (NLQs) by using structured sources such as tables, databases, and knowledge graphs in a unified way. Existing USKR methods either rely on employing task-specific strategies or custom-defined representations, which struggle to leverage the knowledge transfer between different SKR tasks or align with the prior of LLMs, thereby limiting their performance. This paper proposes a novel USKR framework named \textsc{Pandora}, which takes advantage of \textsc{Python}'s \textsc{Pandas} API to construct a unified knowledge representation for alignment with LLM pre-training. It employs an LLM to generate textual reasoning steps and executable Python code for each question. Demonstrations are drawn from a memory of training examples that cover various SKR tasks, facilitating knowledge transfer. Extensive experiments on four benchmarks involving three SKR tasks demonstrate that \textsc{Pandora} outperforms existing unified frameworks and competes effectively with task-specific methods. [Submitted on 17 Apr 2025]

MCP Guardian: A Security-First Layer for Safeguarding MCP-Based AI System
Sonu Kumar, Anubhav Girdhar, Ritesh Patil, Divyansh Tripathi
As Agentic AI gain mainstream adoption, the industry invests heavily in model capabilities, achieving rapid leaps in reasoning and quality. However, these systems remain largely confined to data silos, and each new integration requires custom logic that is difficult to scale. The Model Context Protocol (MCP) addresses this challenge by defining a universal, open standard for securely connecting AI-based applications (MCP clients) to data sources (MCP servers). However, the flexibility of the MCP introduces new risks, including malicious tool servers and compromised data integrity. We present MCP Guardian, a framework that strengthens MCP-based communication with authentication, rate-limiting, logging, tracing, and Web Application Firewall (WAF) scanning. Through real-world scenarios and empirical testing, we demonstrate how MCP Guardian effectively mitigates attacks and ensures robust oversight with minimal overheads. Our approach fosters secure, scalable data access for AI assistants, underscoring the importance of a defense-in-depth approach that enables safer and more transparent innovation in AI-driven environments. [Submitted on 17 Apr 2025]

Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration
Yicheng Pan, Zhenrong Zhang, Pengfei Hu, Jiefeng Ma, Jun Du, Jianshu Zhang, Quan Liu, Jianqing Gao, Feng Ma
Recent advances in Multimodal Large Language Models (MLLMs) have achieved remarkable progress in general domains and demonstrated promise in multimodal mathematical reasoning. However, applying MLLMs to geometry problem solving (GPS) remains challenging due to lack of accurate step-by-step solution data and severe hallucinations during reasoning. In this paper, we propose GeoGen, a pipeline that can automatically generates step-wise reasoning paths for geometry diagrams. By leveraging the precise symbolic reasoning, \textbf{GeoGen} produces large-scale, high-quality question-answer pairs. To further enhance the logical reasoning ability of MLLMs, we train \textbf{GeoLogic}, a Large Language Model (LLM) using synthetic data generated by GeoGen. Serving as a bridge between natural language and symbolic systems, GeoLogic enables symbolic tools to help verifying MLLM outputs, making the reasoning process more rigorous and alleviating hallucinations. Experimental results show that our approach consistently improves the performance of MLLMs, achieving remarkable results on benchmarks for geometric reasoning tasks. This improvement stems from our integration of the strengths of LLMs and symbolic systems, which enables a more reliable and interpretable approach for the GPS task. Codes are available at this https URL. [Submitted on 17 Apr 2025]

Explainable Scene Understanding with Qualitative Representations and Graph Neural Networks
Nassim Belmecheri, Arnaud Gotlieb, Nadjib Lazaar, Helge Spieker
This paper investigates the integration of graph neural networks (GNNs) with Qualitative Explainable Graphs (QXGs) for scene understanding in automated driving. Scene understanding is the basis for any further reactive or proactive decision-making. Scene understanding and related reasoning is inherently an explanation task: why is another traffic participant doing something, what or who caused their actions? While previous work demonstrated QXGs' effectiveness using shallow machine learning models, these approaches were limited to analysing single relation chains between object pairs, disregarding the broader scene context. We propose a novel GNN architecture that processes entire graph structures to identify relevant objects in traffic scenes. We evaluate our method on the nuScenes dataset enriched with DriveLM's human-annotated relevance labels. Experimental results show that our GNN-based approach achieves superior performance compared to baseline methods. The model effectively handles the inherent class imbalance in relevant object identification tasks while considering the complete spatial-temporal relationships between all objects in the scene. Our work demonstrates the potential of combining qualitative representations with deep learning approaches for explainable scene understanding in autonomous driving systems. [Submitted on 17 Apr 2025]

Are Retrials All You Need? Enhancing Large Language Model Reasoning Without Verbalized Feedback
Nearchos Potamitis, Akhil Arora
Recent advancements in large language models (LLMs) have catalyzed the development of general-purpose autonomous agents, demonstrating remarkable performance in complex reasoning tasks across various domains. This surge has spurred the evolution of a plethora of prompt-based reasoning frameworks. A recent focus has been on iterative reasoning strategies that refine outputs through self-evaluation and verbalized feedback. However, these strategies require additional computational complexity to enable models to recognize and correct their mistakes, leading to a significant increase in their cost. In this work, we introduce the concept of ``retrials without feedback'', an embarrassingly simple yet powerful mechanism for enhancing reasoning frameworks by allowing LLMs to retry problem-solving attempts upon identifying incorrect answers. Unlike conventional iterative refinement methods, our method does not require explicit self-reflection or verbalized feedback, simplifying the refinement process. Our findings indicate that simpler retrial-based approaches often outperform more sophisticated reasoning frameworks, suggesting that the benefits of complex methods may not always justify their computational costs. By challenging the prevailing assumption that more intricate reasoning strategies inherently lead to better performance, our work offers new insights into how simpler, more efficient approaches can achieve optimal results. So, are retrials all you need? [Submitted on 17 Apr 2025]

QLLM: Do We Really Need a Mixing Network for Credit Assignment in Multi-Agent Reinforcement Learning?
Zhouyang Jiang, Bin Zhang, Airong Wei, Zhiwei Xu
Credit assignment has remained a fundamental challenge in multi-agent reinforcement learning (MARL). Previous studies have primarily addressed this issue through value decomposition methods under the centralized training with decentralized execution paradigm, where neural networks are utilized to approximate the nonlinear relationship between individual Q-values and the global Q-value. Although these approaches have achieved considerable success in various benchmark tasks, they still suffer from several limitations, including imprecise attribution of contributions, limited interpretability, and poor scalability in high-dimensional state spaces. To address these challenges, we propose a novel algorithm, \textbf{QLLM}, which facilitates the automatic construction of credit assignment functions using large language models (LLMs). Specifically, the concept of \textbf{TFCAF} is introduced, wherein the credit allocation process is represented as a direct and expressive nonlinear functional formulation. A custom-designed \textit{coder-evaluator} framework is further employed to guide the generation, verification, and refinement of executable code by LLMs, significantly mitigating issues such as hallucination and shallow reasoning during inference. Extensive experiments conducted on several standard MARL benchmarks demonstrate that the proposed method consistently outperforms existing state-of-the-art baselines. Moreover, QLLM exhibits strong generalization capability and maintains compatibility with a wide range of MARL algorithms that utilize mixing networks, positioning it as a promising and versatile solution for complex multi-agent scenarios. [Submitted on 17 Apr 2025]

$\texttt{Complex-Edit}$: CoT-Like Instruction Generation for Complexity-Controllable Image Editing Benchmark
Siwei Yang, Mude Hui, Bingchen Zhao, Yuyin Zhou, Nataniel Ruiz, Cihang Xie
We introduce $\texttt{Complex-Edit}$, a comprehensive benchmark designed to systematically evaluate instruction-based image editing models across instructions of varying complexity. To develop this benchmark, we harness GPT-4o to automatically collect a diverse set of editing instructions at scale. Our approach follows a well-structured ``Chain-of-Edit'' pipeline: we first generate individual atomic editing tasks independently and then integrate them to form cohesive, complex instructions. Additionally, we introduce a suite of metrics to assess various aspects of editing performance, along with a VLM-based auto-evaluation pipeline that supports large-scale assessments. Our benchmark yields several notable insights: 1) Open-source models significantly underperform relative to proprietary, closed-source models, with the performance gap widening as instruction complexity increases; 2) Increased instructional complexity primarily impairs the models' ability to retain key elements from the input images and to preserve the overall aesthetic quality; 3) Decomposing a complex instruction into a sequence of atomic steps, executed in a step-by-step manner, substantially degrades performance across multiple metrics; 4) A straightforward Best-of-N selection strategy improves results for both direct editing and the step-by-step sequential approach; and 5) We observe a ``curse of synthetic data'': when synthetic data is involved in model training, the edited images from such models tend to appear increasingly synthetic as the complexity of the editing instructions rises -- a phenomenon that intriguingly also manifests in the latest GPT-4o outputs. [Submitted on 17 Apr 2025]

It's All Connected: A Journey Through Test-Time Memorization, Attentional Bias, Retention, and Online Optimization
Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, Vahab Mirrokni
Designing efficient and effective architectural backbones has been in the core of research efforts to enhance the capability of foundation models. Inspired by the human cognitive phenomenon of attentional bias-the natural tendency to prioritize certain events or stimuli-we reconceptualize neural architectures, including Transformers, Titans, and modern linear recurrent neural networks as associative memory modules that learn a mapping of keys and values using an internal objective, referred to as attentional bias. Surprisingly, we observed that most existing sequence models leverage either (1) dot-product similarity, or (2) L2 regression objectives as their attentional bias. Going beyond these objectives, we present a set of alternative attentional bias configurations along with their effective approximations to stabilize their training procedure. We then reinterpret forgetting mechanisms in modern deep learning architectures as a form of retention regularization, providing a novel set of forget gates for sequence models. Building upon these insights, we present Miras, a general framework to design deep learning architectures based on four choices of: (i) associative memory architecture, (ii) attentional bias objective, (iii) retention gate, and (iv) memory learning algorithm. We present three novel sequence models-Moneta, Yaad, and Memora-that go beyond the power of existing linear RNNs while maintaining a fast parallelizable training process. Our experiments show different design choices in Miras yield models with varying strengths. For example, certain instances of Miras achieve exceptional performance in special tasks such as language modeling, commonsense reasoning, and recall intensive tasks, even outperforming Transformers and other modern linear recurrent models. [Submitted on 17 Apr 2025]

Understanding the Limits of Vision Language Models Through the Lens of the Binding Problem
Declan Campbell, Sunayana Rane, Tyler Giallanza, Nicolò De Sabbata, Kia Ghods, Amogh Joshi, Alexander Ku, Steven M. Frankland, Thomas L. Griffiths, Jonathan D. Cohen, Taylor W. Webb
Recent work has documented striking heterogeneity in the performance of state-of-the-art vision language models (VLMs), including both multimodal language models and text-to-image models. These models are able to describe and generate a diverse array of complex, naturalistic images, yet they exhibit surprising failures on basic multi-object reasoning tasks -- such as counting, localization, and simple forms of visual analogy -- that humans perform with near perfect accuracy. To better understand this puzzling pattern of successes and failures, we turn to theoretical accounts of the binding problem in cognitive science and neuroscience, a fundamental problem that arises when a shared set of representational resources must be used to represent distinct entities (e.g., to represent multiple objects in an image), necessitating the use of serial processing to avoid interference. We find that many of the puzzling failures of state-of-the-art VLMs can be explained as arising due to the binding problem, and that these failure modes are strikingly similar to the limitations exhibited by rapid, feedforward processing in the human brain. [Submitted on 31 Oct 2024 (v1), last revised 16 Apr 2025 (this version, v2)]

Why We Feel: Breaking Boundaries in Emotional Reasoning with Multimodal Large Language Models
Yuxiang Lin, Jingdong Sun, Zhi-Qi Cheng, Jue Wang, Haomin Liang, Zebang Cheng, Yifei Dong, Jun-Yan He, Xiaojiang Peng, Xian-Sheng Hua
Most existing emotion analysis emphasizes which emotion arises (e.g., happy, sad, angry) but neglects the deeper why. We propose Emotion Interpretation (EI), focusing on causal factors-whether explicit (e.g., observable objects, interpersonal interactions) or implicit (e.g., cultural context, off-screen events)-that drive emotional responses. Unlike traditional emotion recognition, EI tasks require reasoning about triggers instead of mere labeling. To facilitate EI research, we present EIBench, a large-scale benchmark encompassing 1,615 basic EI samples and 50 complex EI samples featuring multifaceted emotions. Each instance demands rationale-based explanations rather than straightforward categorization. We further propose a Coarse-to-Fine Self-Ask (CFSA) annotation pipeline, which guides Vision-Language Models (VLLMs) through iterative question-answer rounds to yield high-quality labels at scale. Extensive evaluations on open-source and proprietary large language models under four experimental settings reveal consistent performance gaps-especially for more intricate scenarios-underscoring EI's potential to enrich empathetic, context-aware AI applications. Our benchmark and methods are publicly available at: this https URL, offering a foundation for advanced multimodal causal analysis and next-generation affective computing. [Submitted on 10 Apr 2025 (v1), last revised 17 Apr 2025 (this version, v2)]

Multi-Step Deductive Reasoning Over Natural Language: An Empirical Study on Out-of-Distribution Generalisation
Qiming Bao, Alex Yuxuan Peng, Tim Hartill, Neset Tan, Zhenyun Deng, Michael Witbrock, Jiamou Liu
Combining deep learning with symbolic logic reasoning aims to capitalize on the success of both fields and is drawing increasing attention. Inspired by DeepLogic, an end-to-end model trained to perform inference on logic programs, we introduce IMA-GloVe-GA, an iterative neural inference network for multi-step reasoning expressed in natural language. In our model, reasoning is performed using an iterative memory neural network based on RNN with a gated attention mechanism. We evaluate IMA-GloVe-GA on three datasets: PARARULES, CONCEPTRULES V1 and CONCEPTRULES V2. Experimental results show DeepLogic with gated attention can achieve higher test accuracy than DeepLogic and other RNN baseline models. Our model achieves better out-of-distribution generalisation than RoBERTa-Large when the rules have been shuffled. Furthermore, to address the issue of unbalanced distribution of reasoning depths in the current multi-step reasoning datasets, we develop PARARULE-Plus, a large dataset with more examples that require deeper reasoning steps. Experimental results show that the addition of PARARULE-Plus can increase the model's performance on examples requiring deeper reasoning depths. The source code and data are available at this https URL. [Submitted on 28 Jul 2022 (v1), last revised 17 Apr 2025 (this version, v4)]

Generating Pragmatic Examples to Train Neural Program Synthesizers
Saujas Vaduguru, Daniel Fried, Yewen Pu
Programming-by-example is the task of synthesizing a program that is consistent with a set of user-provided input-output examples. As examples are often an under-specification of one's intent, a good synthesizer must choose the intended program from the many that are consistent with the given set of examples. Prior work frames program synthesis as a cooperative game between a listener (that synthesizes programs) and a speaker (a user choosing examples), and shows that models of computational pragmatic inference are effective in choosing the user intended programs. However, these models require counterfactual reasoning over a large set of programs and examples, which is infeasible in realistic program spaces. In this paper, we propose PraX, a novel way to amortize this search with neural networks. We sample pairs of programs and examples via self-play between listener and speaker models, and use pragmatic inference to choose informative training examples from this sample. We then use the informative dataset to train models to improve the synthesizer's ability to disambiguate user-provided examples without human supervision. We validate PraX on the challenging task of synthesizing regular expressions from example strings, and find that our method (1) outperforms models trained without choosing pragmatic examples by 23% (a 51% relative increase) (2) matches the performance of supervised learning on a dataset of pragmatic examples provided by humans, despite using no human data in training. [Submitted on 9 Nov 2023 (v1), last revised 16 Apr 2025 (this version, v2)]

Look Before You Decide: Prompting Active Deduction of MLLMs for Assumptive Reasoning
Yian Li, Wentao Tian, Yang Jiao, Jingjing Chen, Tianwen Qian, Bin Zhu, Na Zhao, Yu-Gang Jiang
Recently, Multimodal Large Language Models (MLLMs) have achieved significant success across multiple disciplines due to their exceptional instruction-following capabilities and extensive world knowledge. However, whether these MLLMs possess human-like compositional reasoning abilities remains an open problem. To unveil their reasoning behaviors, we first curate a \textbf{M}ultimodal \textbf{A}ssumptive \textbf{R}ea\textbf{s}oning Benchmark (MARS-Bench) in this paper. Interestingly, we find that most prevalent MLLMs can be easily fooled by the introduction of a presupposition into the question, whereas such presuppositions appear naive to human reasoning. Besides, we also propose a simple yet effective method, Active Deduction (AD), a novel reinforcement learning paradigm to encourage the model to actively perform composite deduction before reaching a final decision. Equipped with the proposed AD method, a MLLM demonstrates significant improvements in assumptive reasoning abilities without compromising its general-purpose question-answering performance. We also provide extensive evaluations of both open-source and private MLLMs on MARS-Bench, along with experimental analyses of the AD method. [Submitted on 19 Apr 2024 (v1), last revised 17 Apr 2025 (this version, v5)]

ALCM: Autonomous LLM-Augmented Causal Discovery Framework
Elahe Khatibi, Mahyar Abbasian, Zhongqi Yang, Iman Azimi, Amir M. Rahmani
To perform effective causal inference in high-dimensional datasets, initiating the process with causal discovery is imperative, wherein a causal graph is generated based on observational data. However, obtaining a complete and accurate causal graph poses a formidable challenge, recognized as an NP- hard problem. Recently, the advent of Large Language Models (LLMs) has ushered in a new era, indicating their emergent capabilities and widespread applicability in facilitating causal reasoning across diverse domains, such as medicine, finance, and science. The expansive knowledge base of LLMs holds the potential to elevate the field of causal reasoning by offering interpretability, making inferences, generalizability, and uncovering novel causal structures. In this paper, we introduce a new framework, named Autonomous LLM-Augmented Causal Discovery Framework (ALCM), to synergize data-driven causal discovery algorithms and LLMs, automating the generation of a more resilient, accurate, and explicable causal graph. The ALCM consists of three integral components: causal structure learning, causal wrapper, and LLM-driven causal refiner. These components autonomously collaborate within a dynamic environment to address causal discovery questions and deliver plausible causal graphs. We evaluate the ALCM framework by implementing two demonstrations on seven well-known datasets. Experimental results demonstrate that ALCM outperforms existing LLM methods and conventional data-driven causal reasoning mechanisms. This study not only shows the effectiveness of the ALCM but also underscores new research directions in leveraging the causal reasoning capabilities of LLMs. [Submitted on 2 May 2024 (v1), last revised 16 Apr 2025 (this version, v2)]

Fleet of Agents: Coordinated Problem Solving with Large Language Models
Nearchos Potamitis, Lars Klein, Roland Aydin, Robert West, Caglar Gulcehre, Akhil Arora
While numerous frameworks have been developed to enhance the reasoning abilities of large language models (LLMs), there is a scarcity of methods that effectively balance the trade-off between cost and quality. In this paper, we introduce Fleet of Agents (FoA), a novel and intuitive yet principled framework utilizing LLMs as agents to navigate through dynamic tree searches, employing a genetic-type particle filtering approach. FoA spawns a multitude of agents, each exploring the search space autonomously, followed by a selection phase where resampling based on a heuristic value function optimizes the balance between exploration and exploitation. This mechanism enables dynamic branching, adapting the exploration strategy based on discovered solutions. We conduct extensive experiments on three benchmark tasks, ``Game of 24'', ``Mini-Crosswords'', and ``WebShop'', utilizing four different LLMs, ``GPT-3.5'', ``GPT-4'', ``LLaMA3.2-11B'', and ``LLaMA3.2-90B''. On average across all tasks and LLMs, FoA obtains a quality improvement of ~5% while requiring only ~40% of the cost of previous SOTA methods. Notably, our analyses reveal that (1) FoA achieves the best cost-quality trade-off among all benchmarked methods and (2) FoA + LLaMA3.2-11B surpasses the Llama3.2-90B model. FoA is publicly available at this https URL. [Submitted on 7 May 2024 (v1), last revised 17 Apr 2025 (this version, v2)]

Exploring the Trade-Offs: Quantization Methods, Task Difficulty, and Model Size in Large Language Models From Edge to Giant
Jemin Lee, Sihyeong Park, Jinse Kwon, Jihun Oh, Yongin Kwon
Quantization has gained attention as a promising solution for the cost-effective deployment of large and small language models. However, most prior work has been limited to perplexity or basic knowledge tasks and lacks a comprehensive evaluation of recent models like Llama-3.3. In this paper, we conduct a comprehensive evaluation of instruction-tuned models spanning 1B to 405B parameters, applying four quantization methods across 13 datasets. Our findings reveal that (1) quantized models generally surpass smaller FP16 baselines, yet they often struggle with instruction-following and hallucination detection; (2) FP8 consistently emerges as the most robust option across tasks, and AWQ tends to outperform GPTQ in weight-only quantization; (3) smaller models can suffer severe accuracy drops at 4-bit quantization, while 70B-scale models maintain stable performance; (4) notably, \textit{hard} tasks do not always experience the largest accuracy losses, indicating that quantization magnifies a model's inherent weaknesses rather than simply correlating with task difficulty; and (5) an LLM-based judge (MT-Bench) highlights significant performance declines in coding and STEM tasks, though reasoning may sometimes improve. [Submitted on 17 Sep 2024 (v1), last revised 17 Apr 2025 (this version, v2)]

Comprehending Knowledge Graphs with Large Language Models for Recommender Systems
Ziqiang Cui, Yunpeng Weng, Xing Tang, Fuyuan Lyu, Dugang Liu, Xiuqiang He, Chen Ma
In recent years, the introduction of knowledge graphs (KGs) has significantly advanced recommender systems by facilitating the discovery of potential associations between items. However, existing methods still face several limitations. First, most KGs suffer from missing facts or limited scopes. Second, existing methods convert textual information in KGs into IDs, resulting in the loss of natural semantic connections between different items. Third, existing methods struggle to capture high-order connections in the global KG. To address these limitations, we propose a novel method called CoLaKG, which leverages large language models (LLMs) to improve KG-based recommendations. The extensive knowledge and remarkable reasoning capabilities of LLMs enable our method to supplement missing facts in KGs, and their powerful text understanding abilities allow for better utilization of semantic information. Specifically, CoLaKG extracts useful information from KGs at both local and global levels. By employing the item-centered subgraph extraction and prompt engineering, it can accurately understand the local information. In addition, through the semantic-based retrieval module, each item is enriched by related items from the entire knowledge graph, effectively harnessing global information. Furthermore, the local and global information are effectively integrated into the recommendation model through a representation fusion module and a retrieval-augmented representation learning module, respectively. Extensive experiments on four real-world datasets demonstrate the superiority of our method. [Submitted on 16 Oct 2024 (v1), last revised 17 Apr 2025 (this version, v3)]

Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
Ruixiang Jiang, Changwen Chen
The rapid progress of generative art has democratized the creation of visually pleasing imagery. However, achieving genuine artistic impact - the kind that resonates with viewers on a deeper, more meaningful level - requires a sophisticated aesthetic sensibility. This sensibility involves a multi-faceted reasoning process extending beyond mere visual appeal, which is often overlooked by current computational models. This paper pioneers an approach to capture this complex process by investigating how the reasoning capabilities of Multimodal LLMs (MLLMs) can be effectively elicited for aesthetic judgment. Our analysis reveals a critical challenge: MLLMs exhibit a tendency towards hallucinations during aesthetic reasoning, characterized by subjective opinions and unsubstantiated artistic interpretations. We further demonstrate that these limitations can be overcome by employing an evidence-based, objective reasoning process, as substantiated by our proposed baseline, ArtCoT. MLLMs prompted by this principle produce multi-faceted and in-depth aesthetic reasoning that aligns significantly better with human judgment. These findings have direct applications in areas such as AI art tutoring and as reward models for generative art. Ultimately, our work paves the way for AI systems that can truly understand, appreciate, and generate artworks that align with the sensible human aesthetic standard. [Submitted on 15 Jan 2025 (v1), last revised 17 Apr 2025 (this version, v2)]

ZeroSumEval: An Extensible Framework For Scaling LLM Evaluation with Inter-Model Competition
Hisham A. Alyahya, Haidar Khan, Yazeed Alnumay, M Saiful Bari, Bülent Yener
We introduce ZeroSumEval, a dynamic, competition-based, and evolving evaluation framework for Large Language Models (LLMs) that leverages competitive games. ZeroSumEval encompasses a diverse suite of games, including security challenges (Capture the Flag), classic board games (chess), and knowledge tests (MathQuiz). These games are designed to evaluate a range of capabilities such as strategic reasoning, planning, knowledge application, safety, and adaptability. Building upon recent studies that highlight the effectiveness of game-based evaluations for LLMs, ZeroSumEval enhances these approaches by providing a standardized and extensible framework for easily implementing games and leverages DSPy to provide a better abstraction for LLM player strategies. [Submitted on 10 Mar 2025 (v1), last revised 17 Apr 2025 (this version, v2)]

GPG: A Simple and Strong Reinforcement Learning Baseline for Model Reasoning
Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, Yong Wang
Reinforcement Learning (RL) can directly enhance the reasoning capabilities of large language models without extensive reliance on Supervised Fine-Tuning (SFT). In this work, we revisit the traditional Policy Gradient (PG) mechanism and propose a minimalist RL approach termed Group Policy Gradient (GPG). Unlike conventional methods, GPG directly optimize the original RL objective, thus obviating the need for surrogate loss functions. By eliminating the critic and reference models, avoiding KL divergence constraints, and addressing the advantage and gradient estimation bias, our approach significantly simplifies the training process compared to Group Relative Policy Optimization (GRPO). Our approach achieves superior performance without relying on auxiliary techniques or adjustments. As illustrated in Figure 1, extensive experiments demonstrate that our method not only reduces computational costs but also consistently outperforms GRPO across various unimodal and multimodal tasks. Our code is available at this https URL. [Submitted on 3 Apr 2025 (v1), last revised 17 Apr 2025 (this version, v2)]

ReTool: Reinforcement Learning for Strategic Tool Use in LLMs
Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin Chi, Wanjun Zhong
While reasoning models (e.g., DeepSeek R1) trained with reinforcement learning (RL), excel in textual reasoning, they struggle in scenarios requiring structured problem-solving, such as geometric reasoning, concise computation, or complex equation solving-areas where computational tools like code interpreters (CI) demonstrate distinct advantages. To bridge this gap, we propose ReTool, which enhances long-form reasoning with tool-integrated learning, including two key features: (1) dynamic interleaving of real-time code execution within natural language reasoning processes, and (2) an automated RL paradigm that allows policy rollouts with multi-turn real-time code execution and teaches the model in learning when and how to invoke tools based on outcome feedback. ReTool employs a systematic training framework, beginning with synthetic cold-start data generation to produce code-augmented long-form reasoning traces for fine-tuning base models. Subsequent RL training leverages task outcomes as rewards to iteratively refine the model's tool use strategy, enabling autonomous discovery of optimal tool invocation patterns without human priors. Experiments on the challenging MATH Olympiad benchmark AIME demonstrate ReTool's superiority: Our 32B model achieves 67% accuracy with 400 training steps, outperforming text-based RL baseline (40% accuracy, 1080 steps) in efficiency and performance. Remarkably, ReTool-32B attains 72.5% accuracy in extended settings, surpassing OpenAI's o1-preview by 27.9%. Further analysis reveals emergent behaviors such as code self-correction, signaling an ''aha moment'' in which the model autonomously masters adaptive tool use. These findings highlight the promise of outcome-driven tool integration for advancing complex mathematical reasoning and offer new insights into hybrid neuro-symbolic systems. [Submitted on 15 Apr 2025 (v1), last revised 17 Apr 2025 (this version, v2)]

The Hitchhiker's Guide to Program Analysis, Part II: Deep Thoughts by LLMs
Haonan Li, Hang Zhang, Kexin Pei, Zhiyun Qian
Static analysis is a cornerstone for software vulnerability detection, yet it often struggles with the classic precision-scalability trade-off. In practice, such tools often produce high false positive rates, particularly in large codebases like the Linux kernel. This imprecision can arise from simplified vulnerability modeling and over-approximation of path and data constraints. While large language models (LLMs) show promise in code understanding, their naive application to program analysis yields unreliable results due to inherent reasoning limitations. We introduce BugLens, a post-refinement framework that significantly improves static analysis precision. BugLens guides an LLM to follow traditional analysis steps by assessing buggy code patterns for security impact and validating the constraints associated with static warnings. Evaluated on real-world Linux kernel bugs, BugLens raises precision from 0.10 (raw) and 0.50 (semi-automated refinement) to 0.72, substantially reducing false positives and revealing four previously unreported vulnerabilities. Our results suggest that a structured LLM-based workflow can meaningfully enhance the effectiveness of static analysis tools. [Submitted on 16 Apr 2025 (v1), last revised 17 Apr 2025 (this version, v2)]

Causality-enhanced Decision-Making for Autonomous Mobile Robots in Dynamic Environments
Luca Castri, Gloria Beraldo, Nicola Bellotto
The growing integration of robots in shared environments -- such as warehouses, shopping centres, and hospitals -- demands a deep understanding of the underlying dynamics and human behaviours, including how, when, and where individuals engage in various activities and interactions. This knowledge goes beyond simple correlation studies and requires a more comprehensive causal analysis. By leveraging causal inference to model cause-and-effect relationships, we can better anticipate critical environmental factors and enable autonomous robots to plan and execute tasks more effectively. To this end, we propose a novel causality-based decision-making framework that reasons over a learned causal model to predict battery usage and human obstructions, understanding how these factors could influence robot task execution. Such reasoning framework assists the robot in deciding when and how to complete a given task. To achieve this, we developed also PeopleFlow, a new Gazebo-based simulator designed to model context-sensitive human-robot spatial interactions in shared workspaces. PeopleFlow features realistic human and robot trajectories influenced by contextual factors such as time, environment layout, and robot state, and can simulate a large number of agents. While the simulator is general-purpose, in this paper we focus on a warehouse-like environment as a case study, where we conduct an extensive evaluation benchmarking our causal approach against a non-causal baseline. Our findings demonstrate the efficacy of the proposed solutions, highlighting how causal reasoning enables autonomous robots to operate more efficiently and safely in dynamic environments shared with humans. [Submitted on 16 Apr 2025 (v1), last revised 17 Apr 2025 (this version, v2)]

NLG
Multimodal
Embodied-R: Collaborative Framework for Activating Embodied Spatial Reasoning in Foundation Models via Reinforcement Learning
Baining Zhao, Ziyou Wang, Jianjie Fang, Chen Gao, Fanhang Man, Jinqiang Cui, Xin Wang, Xinlei Chen, Yong Li, Wenwu Zhu
Humans can perceive and reason about spatial relationships from sequential visual observations, such as egocentric video streams. However, how pretrained models acquire such abilities, especially high-level reasoning, remains unclear. This paper introduces Embodied-R, a collaborative framework combining large-scale Vision-Language Models (VLMs) for perception and small-scale Language Models (LMs) for reasoning. Using Reinforcement Learning (RL) with a novel reward system considering think-answer logical consistency, the model achieves slow-thinking capabilities with limited computational resources. After training on only 5k embodied video samples, Embodied-R with a 3B LM matches state-of-the-art multimodal reasoning models (OpenAI-o1, Gemini-2.5-pro) on both in-distribution and out-of-distribution embodied spatial reasoning tasks. Embodied-R also exhibits emergent thinking patterns such as systematic analysis and contextual integration. We further explore research questions including response length, training on VLM, strategies for reward design, and differences in model generalization after SFT (Supervised Fine-Tuning) and RL training. [Submitted on 17 Apr 2025]

Capybara-OMNI: An Efficient Paradigm for Building Omni-Modal Language Models
Xingguang Ji, Jiakang Wang, Hongzhi Zhang, Jingyuan Zhang, Haonan Zhou, Chenxi Sun, Yahui Liu, Qi Wang, Fuzheng Zhang
With the development of Multimodal Large Language Models (MLLMs), numerous outstanding accomplishments have emerged within the open-source community. Due to the complexity of creating and training multimodal data pairs, it is still a computational and time-consuming process to build powerful MLLMs. In this work, we introduce Capybara-OMNI, an MLLM that trains in a lightweight and efficient manner and supports understanding text, image, video, and audio modalities. We present in detail the framework design, the data construction, and the training recipe, to develop an MLLM step-by-step to obtain competitive performance. We also provide exclusive benchmarks utilized in our experiments to show how to properly verify understanding capabilities across different modalities. Results show that by following our guidance, we can efficiently build an MLLM that achieves competitive performance among models of the same scale on various multimodal benchmarks. Additionally, to enhance the multimodal instruction following and conversational capabilities of the model, we further discuss how to train the chat version upon an MLLM understanding model, which is more in line with user habits for tasks like real-time interaction with humans. We publicly disclose the Capybara-OMNI model, along with its chat-based version. The disclosure includes both the model weights, a portion of the training data, and the inference codes, which are made available on GitHub. [Submitted on 10 Apr 2025]

Data Metabolism: An Efficient Data Design Schema For Vision Language Model
Jingyuan Zhang, Hongzhi Zhang, Zhou Haonan, Chenxi Sun, Xingguang ji, Jiakang Wang, Fanheng Kong, Yahui Liu, Qi Wang, Fuzheng Zhang
Data curation plays a crucial role in training powerful Visual Language Models (VLMs). In this work, we introduce the concept of Data Metabolism and present our data-centric framework to build VLMs throughout the development lifecycle. Starting from a standard model architecture, we discuss and provide insights into two crucial development steps: data curation and iteration, forming a closed-loop system that continuously improves model performance. We show a detailed codebook on how to process existing massive datasets and build user-specific data flywheel. As a demonstration, we release a VLM, named Capybara-VL, which excels in typical multimodal tasks (e.g. , visual question answering, scientific reasoning, and text-rich tasks). Despite its relatively compact size, Capybara-VL surpasses several open-source models that are up to 10 times larger in size. Moreover, it achieves results that are on par with those of several leading proprietary models, demonstrating its remarkable competitiveness. These results highlight the power of our data-centric framework and the potential of training smaller and more efficient VLMs. [Submitted on 10 Apr 2025]

Reconstructing Sepsis Trajectories from Clinical Case Reports using LLMs: the Textual Time Series Corpus for Sepsis
Shahriar Noroozizadeh, Jeremy C. Weiss
Clinical case reports and discharge summaries may be the most complete and accurate summarization of patient encounters, yet they are finalized, i.e., timestamped after the encounter. Complementary data structured streams become available sooner but suffer from incompleteness. To train models and algorithms on more complete and temporally fine-grained data, we construct a pipeline to phenotype, extract, and annotate time-localized findings within case reports using large language models. We apply our pipeline to generate an open-access textual time series corpus for Sepsis-3 comprising 2,139 case reports from the Pubmed-Open Access (PMOA) Subset. To validate our system, we apply it on PMOA and timeline annotations from I2B2/MIMIC-IV and compare the results to physician-expert annotations. We show high recovery rates of clinical findings (event match rates: O1-preview--0.755, Llama 3.3 70B Instruct--0.753) and strong temporal ordering (concordance: O1-preview--0.932, Llama 3.3 70B Instruct--0.932). Our work characterizes the ability of LLMs to time-localize clinical findings in text, illustrating the limitations of LLM use for temporal reconstruction and providing several potential avenues of improvement via multimodal integration. [Submitted on 12 Apr 2025]

HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation
Pei Liu, Xin Liu, Ruoyu Yao, Junming Liu, Siyuan Meng, Ding Wang, Jun Ma
While Retrieval-Augmented Generation (RAG) augments Large Language Models (LLMs) with external knowledge, conventional single-agent RAG remains fundamentally limited in resolving complex queries demanding coordinated reasoning across heterogeneous data ecosystems. We present HM-RAG, a novel Hierarchical Multi-agent Multimodal RAG framework that pioneers collaborative intelligence for dynamic knowledge synthesis across structured, unstructured, and graph-based data. The framework is composed of three-tiered architecture with specialized agents: a Decomposition Agent that dissects complex queries into contextually coherent sub-tasks via semantic-aware query rewriting and schema-guided context augmentation; Multi-source Retrieval Agents that carry out parallel, modality-specific retrieval using plug-and-play modules designed for vector, graph, and web-based databases; and a Decision Agent that uses consistency voting to integrate multi-source answers and resolve discrepancies in retrieval results through Expert Model Refinement. This architecture attains comprehensive query understanding by combining textual, graph-relational, and web-derived evidence, resulting in a remarkable 12.95% improvement in answer accuracy and a 3.56% boost in question classification accuracy over baseline RAG systems on the ScienceQA and CrisisMMD benchmarks. Notably, HM-RAG establishes state-of-the-art results in zero-shot settings on both datasets. Its modular architecture ensures seamless integration of new data modalities while maintaining strict data governance, marking a significant advancement in addressing the critical challenges of multimodal reasoning and knowledge synthesis in RAG systems. Code is available at this https URL. [Submitted on 13 Apr 2025]

Multimodal LLM Augmented Reasoning for Interpretable Visual Perception Analysis
Shravan Chaudhari, Trilokya Akula, Yoon Kim, Tom Blake
In this paper, we advance the study of AI-augmented reasoning in the context of Human-Computer Interaction (HCI), psychology and cognitive science, focusing on the critical task of visual perception. Specifically, we investigate the applicability of Multimodal Large Language Models (MLLMs) in this domain. To this end, we leverage established principles and explanations from psychology and cognitive science related to complexity in human visual perception. We use them as guiding principles for the MLLMs to compare and interprete visual content. Our study aims to benchmark MLLMs across various explainability principles relevant to visual perception. Unlike recent approaches that primarily employ advanced deep learning models to predict complexity metrics from visual content, our work does not seek to develop a mere new predictive model. Instead, we propose a novel annotation-free analytical framework to assess utility of MLLMs as cognitive assistants for HCI tasks, using visual perception as a case study. The primary goal is to pave the way for principled study in quantifying and evaluating the interpretability of MLLMs for applications in improving human reasoning capability and uncovering biases in existing perception datasets annotated by humans. [Submitted on 16 Apr 2025]

CM3AE: A Unified RGB Frame and Event-Voxel/-Frame Pre-training Framework
Wentao Wu, Xiao Wang, Chenglong Li, Bo Jiang, Jin Tang, Bin Luo, Qi Liu
Event cameras have attracted increasing attention in recent years due to their advantages in high dynamic range, high temporal resolution, low power consumption, and low latency. Some researchers have begun exploring pre-training directly on event data. Nevertheless, these efforts often fail to establish strong connections with RGB frames, limiting their applicability in multi-modal fusion scenarios. To address these issues, we propose a novel CM3AE pre-training framework for the RGB-Event perception. This framework accepts multi-modalities/views of data as input, including RGB images, event images, and event voxels, providing robust support for both event-based and RGB-event fusion based downstream tasks. Specifically, we design a multi-modal fusion reconstruction module that reconstructs the original image from fused multi-modal features, explicitly enhancing the model's ability to aggregate cross-modal complementary information. Additionally, we employ a multi-modal contrastive learning strategy to align cross-modal feature representations in a shared latent space, which effectively enhances the model's capability for multi-modal understanding and capturing global dependencies. We construct a large-scale dataset containing 2,535,759 RGB-Event data pairs for the pre-training. Extensive experiments on five downstream tasks fully demonstrated the effectiveness of CM3AE. Source code and pre-trained models will be released on this https URL. [Submitted on 17 Apr 2025]

Post-pre-training for Modality Alignment in Vision-Language Foundation Models
Shin'ya Yamaguchi, Dewei Feng, Sekitoshi Kanai, Kazuki Adachi, Daiki Chijiwa
Contrastive language image pre-training (CLIP) is an essential component of building modern vision-language foundation models. While CLIP demonstrates remarkable zero-shot performance on downstream tasks, the multi-modal feature spaces still suffer from a modality gap, which is a gap between image and text feature clusters and limits downstream task performance. Although existing works attempt to address the modality gap by modifying pre-training or fine-tuning, they struggle with heavy training costs with large datasets or degradations of zero-shot performance. This paper presents CLIP-Refine, a post-pre-training method for CLIP models at a phase between pre-training and fine-tuning. CLIP-Refine aims to align the feature space with 1 epoch training on small image-text datasets without zero-shot performance degradations. To this end, we introduce two techniques: random feature alignment (RaFA) and hybrid contrastive-distillation (HyCD). RaFA aligns the image and text features to follow a shared prior distribution by minimizing the distance to random reference vectors sampled from the prior. HyCD updates the model with hybrid soft labels generated by combining ground-truth image-text pair labels and outputs from the pre-trained CLIP model. This contributes to achieving both maintaining the past knowledge and learning new knowledge to align features. Our extensive experiments with multiple classification and retrieval tasks show that CLIP-Refine succeeds in mitigating the modality gap and improving the zero-shot performance. [Submitted on 17 Apr 2025]

Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration
Yicheng Pan, Zhenrong Zhang, Pengfei Hu, Jiefeng Ma, Jun Du, Jianshu Zhang, Quan Liu, Jianqing Gao, Feng Ma
Recent advances in Multimodal Large Language Models (MLLMs) have achieved remarkable progress in general domains and demonstrated promise in multimodal mathematical reasoning. However, applying MLLMs to geometry problem solving (GPS) remains challenging due to lack of accurate step-by-step solution data and severe hallucinations during reasoning. In this paper, we propose GeoGen, a pipeline that can automatically generates step-wise reasoning paths for geometry diagrams. By leveraging the precise symbolic reasoning, \textbf{GeoGen} produces large-scale, high-quality question-answer pairs. To further enhance the logical reasoning ability of MLLMs, we train \textbf{GeoLogic}, a Large Language Model (LLM) using synthetic data generated by GeoGen. Serving as a bridge between natural language and symbolic systems, GeoLogic enables symbolic tools to help verifying MLLM outputs, making the reasoning process more rigorous and alleviating hallucinations. Experimental results show that our approach consistently improves the performance of MLLMs, achieving remarkable results on benchmarks for geometric reasoning tasks. This improvement stems from our integration of the strengths of LLMs and symbolic systems, which enables a more reliable and interpretable approach for the GPS task. Codes are available at this https URL. [Submitted on 17 Apr 2025]

Low-hallucination Synthetic Captions for Large-Scale Vision-Language Model Pre-training
Xinsong Zhang, Yarong Zeng, Xinting Huang, Hu Hu, Runquan Xie, Han Hu, Zhanhui Kang
In recent years, the field of vision-language model pre-training has experienced rapid advancements, driven primarily by the continuous enhancement of textual capabilities in large language models. However, existing training paradigms for multimodal large language models heavily rely on high-quality image-text pairs. As models and data scales grow exponentially, the availability of such meticulously curated data has become increasingly scarce and saturated, thereby severely limiting further advancements in this domain. This study investigates scalable caption generation techniques for vision-language model pre-training and demonstrates that large-scale low-hallucination synthetic captions can serve dual purposes: 1) acting as a viable alternative to real-world data for pre-training paradigms and 2) achieving superior performance enhancement when integrated into vision-language models through empirical validation. This paper presents three key contributions: 1) a novel pipeline for generating high-quality, low-hallucination, and knowledge-rich synthetic captions. Our continuous DPO methodology yields remarkable results in reducing hallucinations. Specifically, the non-hallucination caption rate on a held-out test set increases from 48.2% to 77.9% for a 7B-size model. 2) Comprehensive empirical validation reveals that our synthetic captions confer superior pre-training advantages over their counterparts. Across 35 vision language tasks, the model trained with our data achieves a significant performance gain of at least 6.2% compared to alt-text pairs and other previous work. Meanwhile, it also offers considerable support in the text-to-image domain. With our dataset, the FID score is reduced by 17.1 on a real-world validation benchmark and 13.3 on the MSCOCO validation benchmark. 3) We will release Hunyuan-Recap100M, a low-hallucination and knowledge-intensive synthetic caption dataset. [Submitted on 17 Apr 2025]

Understanding the Limits of Vision Language Models Through the Lens of the Binding Problem
Declan Campbell, Sunayana Rane, Tyler Giallanza, Nicolò De Sabbata, Kia Ghods, Amogh Joshi, Alexander Ku, Steven M. Frankland, Thomas L. Griffiths, Jonathan D. Cohen, Taylor W. Webb
Recent work has documented striking heterogeneity in the performance of state-of-the-art vision language models (VLMs), including both multimodal language models and text-to-image models. These models are able to describe and generate a diverse array of complex, naturalistic images, yet they exhibit surprising failures on basic multi-object reasoning tasks -- such as counting, localization, and simple forms of visual analogy -- that humans perform with near perfect accuracy. To better understand this puzzling pattern of successes and failures, we turn to theoretical accounts of the binding problem in cognitive science and neuroscience, a fundamental problem that arises when a shared set of representational resources must be used to represent distinct entities (e.g., to represent multiple objects in an image), necessitating the use of serial processing to avoid interference. We find that many of the puzzling failures of state-of-the-art VLMs can be explained as arising due to the binding problem, and that these failure modes are strikingly similar to the limitations exhibited by rapid, feedforward processing in the human brain. [Submitted on 31 Oct 2024 (v1), last revised 16 Apr 2025 (this version, v2)]

Why We Feel: Breaking Boundaries in Emotional Reasoning with Multimodal Large Language Models
Yuxiang Lin, Jingdong Sun, Zhi-Qi Cheng, Jue Wang, Haomin Liang, Zebang Cheng, Yifei Dong, Jun-Yan He, Xiaojiang Peng, Xian-Sheng Hua
Most existing emotion analysis emphasizes which emotion arises (e.g., happy, sad, angry) but neglects the deeper why. We propose Emotion Interpretation (EI), focusing on causal factors-whether explicit (e.g., observable objects, interpersonal interactions) or implicit (e.g., cultural context, off-screen events)-that drive emotional responses. Unlike traditional emotion recognition, EI tasks require reasoning about triggers instead of mere labeling. To facilitate EI research, we present EIBench, a large-scale benchmark encompassing 1,615 basic EI samples and 50 complex EI samples featuring multifaceted emotions. Each instance demands rationale-based explanations rather than straightforward categorization. We further propose a Coarse-to-Fine Self-Ask (CFSA) annotation pipeline, which guides Vision-Language Models (VLLMs) through iterative question-answer rounds to yield high-quality labels at scale. Extensive evaluations on open-source and proprietary large language models under four experimental settings reveal consistent performance gaps-especially for more intricate scenarios-underscoring EI's potential to enrich empathetic, context-aware AI applications. Our benchmark and methods are publicly available at: this https URL, offering a foundation for advanced multimodal causal analysis and next-generation affective computing. [Submitted on 10 Apr 2025 (v1), last revised 17 Apr 2025 (this version, v2)]

Look Before You Decide: Prompting Active Deduction of MLLMs for Assumptive Reasoning
Yian Li, Wentao Tian, Yang Jiao, Jingjing Chen, Tianwen Qian, Bin Zhu, Na Zhao, Yu-Gang Jiang
Recently, Multimodal Large Language Models (MLLMs) have achieved significant success across multiple disciplines due to their exceptional instruction-following capabilities and extensive world knowledge. However, whether these MLLMs possess human-like compositional reasoning abilities remains an open problem. To unveil their reasoning behaviors, we first curate a \textbf{M}ultimodal \textbf{A}ssumptive \textbf{R}ea\textbf{s}oning Benchmark (MARS-Bench) in this paper. Interestingly, we find that most prevalent MLLMs can be easily fooled by the introduction of a presupposition into the question, whereas such presuppositions appear naive to human reasoning. Besides, we also propose a simple yet effective method, Active Deduction (AD), a novel reinforcement learning paradigm to encourage the model to actively perform composite deduction before reaching a final decision. Equipped with the proposed AD method, a MLLM demonstrates significant improvements in assumptive reasoning abilities without compromising its general-purpose question-answering performance. We also provide extensive evaluations of both open-source and private MLLMs on MARS-Bench, along with experimental analyses of the AD method. [Submitted on 19 Apr 2024 (v1), last revised 17 Apr 2025 (this version, v5)]

PhishLang: A Real-Time, Fully Client-Side Phishing Detection Framework Using MobileBERT
Sayak Saha Roy, Shirin Nilizadeh
In this paper, we introduce PhishLang, the first fully client-side anti-phishing framework built on a lightweight ensemble framework that utilizes advanced language models to analyze the contextual features of a website's source code and URL. Unlike traditional heuristic or machine learning approaches that rely on static features and struggle to adapt to evolving threats, or deep learning models that are computationally intensive, our approach utilizes MobileBERT, a fast and memory-efficient variant of the BERT architecture, to capture nuanced features indicative of phishing attacks. To further enhance detection accuracy, PhishLang employs a multi-modal ensemble approach, combining both the URL and Source detection models. This architecture ensures robustness by allowing one model to compensate for scenarios where the other may fail, or if both models provide ambiguous inferences. As a result, PhishLang excels at detecting both regular and evasive phishing threats, including zero-day attacks, outperforming popular anti-phishing tools, while operating without relying on external blocklists and safeguarding user privacy by ensuring that browser history remains entirely local and unshared. We release PhishLang as a Chromium browser extension and also open-source the framework to aid the research community. [Submitted on 11 Aug 2024 (v1), last revised 16 Apr 2025 (this version, v3)]

Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework
Neel P. Bhatt, Yunhao Yang, Rohan Siva, Daniel Milan, Ufuk Topcu, Zhangyang Wang
Multimodal foundation models offer a promising framework for robotic perception and planning by processing sensory inputs to generate actionable plans. However, addressing uncertainty in both perception (sensory interpretation) and decision-making (plan generation) remains a critical challenge for ensuring task reliability. We present a comprehensive framework to disentangle, quantify, and mitigate these two forms of uncertainty. We first introduce a framework for uncertainty disentanglement, isolating perception uncertainty arising from limitations in visual understanding and decision uncertainty relating to the robustness of generated plans. To quantify each type of uncertainty, we propose methods tailored to the unique properties of perception and decision-making: we use conformal prediction to calibrate perception uncertainty and introduce Formal-Methods-Driven Prediction (FMDP) to quantify decision uncertainty, leveraging formal verification techniques for theoretical guarantees. Building on this quantification, we implement two targeted intervention mechanisms: an active sensing process that dynamically re-observes high-uncertainty scenes to enhance visual input quality and an automated refinement procedure that fine-tunes the model on high-certainty data, improving its capability to meet task specifications. Empirical validation in real-world and simulated robotic tasks demonstrates that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines. These improvements are attributed to the combined effect of both interventions and highlight the importance of uncertainty disentanglement, which facilitates targeted interventions that enhance the robustness and reliability of autonomous systems. Fine-tuned models, code, and datasets are available at this https URL. [Submitted on 3 Nov 2024 (v1), last revised 17 Apr 2025 (this version, v3)]

AMPS: ASR with Multimodal Paraphrase Supervision
Abhishek Gupta, Amruta Parulekar, Sameep Chattopadhyay, Preethi Jyothi
Spontaneous or conversational multilingual speech presents many challenges for state-of-the-art automatic speech recognition (ASR) systems. In this work, we present a new technique AMPS that augments a multilingual multimodal ASR system with paraphrase-based supervision for improved conversational ASR in multiple languages, including Hindi, Marathi, Malayalam, Kannada, and Nyanja. We use paraphrases of the reference transcriptions as additional supervision while training the multimodal ASR model and selectively invoke this paraphrase objective for utterances with poor ASR performance. Using AMPS with a state-of-the-art multimodal model SeamlessM4T, we obtain significant relative reductions in word error rates (WERs) of up to 5%. We present detailed analyses of our system using both objective and human evaluation metrics. [Submitted on 27 Nov 2024 (v1), last revised 16 Apr 2025 (this version, v2)]

ArtCrafter: Text-Image Aligning Style Transfer via Embedding Reframing
Nisha Huang, Kaer Huang, Yifan Pu, Jiangshan Wang, Jie Guo, Yiqiang Yan, Xiu Li, Tong-Yee Lee
Recent years have witnessed significant advancements in text-guided style transfer, primarily attributed to innovations in diffusion models. These models excel in conditional guidance, utilizing text or images to direct the sampling process. However, despite their capabilities, direct conditional guidance approaches often face challenges in balancing the expressiveness of textual semantics with the diversity of output results while capturing stylistic features. To address these challenges, we introduce ArtCrafter, a novel framework for text-to-image style transfer. Specifically, we introduce an attention-based style extraction module, meticulously engineered to capture the subtle stylistic elements within an image. This module features a multi-layer architecture that leverages the capabilities of perceiver attention mechanisms to integrate fine-grained information. Additionally, we present a novel text-image aligning augmentation component that adeptly balances control over both modalities, enabling the model to efficiently map image and text embeddings into a shared feature space. We achieve this through attention operations that enable smooth information flow between modalities. Lastly, we incorporate an explicit modulation that seamlessly blends multimodal enhanced embeddings with original embeddings through an embedding reframing design, empowering the model to generate diverse outputs. Extensive experiments demonstrate that ArtCrafter yields impressive results in visual stylization, exhibiting exceptional levels of stylistic intensity, controllability, and diversity. [Submitted on 3 Jan 2025 (v1), last revised 17 Apr 2025 (this version, v2)]

Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
Ruixiang Jiang, Changwen Chen
The rapid progress of generative art has democratized the creation of visually pleasing imagery. However, achieving genuine artistic impact - the kind that resonates with viewers on a deeper, more meaningful level - requires a sophisticated aesthetic sensibility. This sensibility involves a multi-faceted reasoning process extending beyond mere visual appeal, which is often overlooked by current computational models. This paper pioneers an approach to capture this complex process by investigating how the reasoning capabilities of Multimodal LLMs (MLLMs) can be effectively elicited for aesthetic judgment. Our analysis reveals a critical challenge: MLLMs exhibit a tendency towards hallucinations during aesthetic reasoning, characterized by subjective opinions and unsubstantiated artistic interpretations. We further demonstrate that these limitations can be overcome by employing an evidence-based, objective reasoning process, as substantiated by our proposed baseline, ArtCoT. MLLMs prompted by this principle produce multi-faceted and in-depth aesthetic reasoning that aligns significantly better with human judgment. These findings have direct applications in areas such as AI art tutoring and as reward models for generative art. Ultimately, our work paves the way for AI systems that can truly understand, appreciate, and generate artworks that align with the sensible human aesthetic standard. [Submitted on 15 Jan 2025 (v1), last revised 17 Apr 2025 (this version, v2)]

DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey
Yu Qiao, Phuong-Nam Tran, Ji Su Yoon, Loc X. Nguyen, Eui-Nam Huh, Dusit Niyato, Choong Seon Hong
Reinforcement learning (RL)-based large language models (LLMs), such as ChatGPT, DeepSeek, and Grok-3, have gained significant attention for their exceptional capabilities in natural language processing and multimodal data understanding. Meanwhile, the rapid expansion of information services has driven the growing need for intelligence, efficient, and adaptable wireless networks. Wireless networks require the empowerment of RL-based LLMs while these models also benefit from wireless networks to broaden their application scenarios. Specifically, RL-based LLMs can enhance wireless communication systems through intelligent resource allocation, adaptive network optimization, and real-time decision-making. Conversely, wireless networks provide a vital infrastructure for the efficient training, deployment, and distributed inference of RL-based LLMs, especially in decentralized and edge computing environments. This mutual empowerment highlights the need for a deeper exploration of the interplay between these two domains. We first review recent advancements in wireless communications, highlighting the associated challenges and potential solutions. We then discuss the progress of RL-based LLMs, focusing on key technologies for LLM training, challenges, and potential solutions. Subsequently, we explore the mutual empowerment between these two fields, highlighting key motivations, open challenges, and potential solutions. Finally, we provide insights into future directions, applications, and their societal impact to further explore this intersection, paving the way for next-generation intelligent communication systems. Overall, this survey provides a comprehensive overview of the relationship between RL-based LLMs and wireless networks, offering a vision where these domains empower each other to drive innovations. [Submitted on 13 Mar 2025 (v1), last revised 17 Apr 2025 (this version, v3)]

GPG: A Simple and Strong Reinforcement Learning Baseline for Model Reasoning
Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, Yong Wang
Reinforcement Learning (RL) can directly enhance the reasoning capabilities of large language models without extensive reliance on Supervised Fine-Tuning (SFT). In this work, we revisit the traditional Policy Gradient (PG) mechanism and propose a minimalist RL approach termed Group Policy Gradient (GPG). Unlike conventional methods, GPG directly optimize the original RL objective, thus obviating the need for surrogate loss functions. By eliminating the critic and reference models, avoiding KL divergence constraints, and addressing the advantage and gradient estimation bias, our approach significantly simplifies the training process compared to Group Relative Policy Optimization (GRPO). Our approach achieves superior performance without relying on auxiliary techniques or adjustments. As illustrated in Figure 1, extensive experiments demonstrate that our method not only reduces computational costs but also consistently outperforms GRPO across various unimodal and multimodal tasks. Our code is available at this https URL. [Submitted on 3 Apr 2025 (v1), last revised 17 Apr 2025 (this version, v2)]

Securing the Skies: A Comprehensive Survey on Anti-UAV Methods, Benchmarking, and Future Directions
Yifei Dong, Fengyi Wu, Sanjian Zhang, Guangyu Chen, Yuzhi Hu, Masumi Yano, Jingdong Sun, Siyu Huang, Feng Liu, Qi Dai, Zhi-Qi Cheng
Unmanned Aerial Vehicles (UAVs) are indispensable for infrastructure inspection, surveillance, and related tasks, yet they also introduce critical security challenges. This survey provides a wide-ranging examination of the anti-UAV domain, centering on three core objectives-classification, detection, and tracking-while detailing emerging methodologies such as diffusion-based data synthesis, multi-modal fusion, vision-language modeling, self-supervised learning, and reinforcement learning. We systematically evaluate state-of-the-art solutions across both single-modality and multi-sensor pipelines (spanning RGB, infrared, audio, radar, and RF) and discuss large-scale as well as adversarially oriented benchmarks. Our analysis reveals persistent gaps in real-time performance, stealth detection, and swarm-based scenarios, underscoring pressing needs for robust, adaptive anti-UAV systems. By highlighting open research directions, we aim to foster innovation and guide the development of next-generation defense strategies in an era marked by the extensive use of UAVs. [Submitted on 16 Apr 2025 (v1), last revised 17 Apr 2025 (this version, v2)]

2025-04-19
Creative
Reasoning
NLG
Multimodal
2025-04-18
Creative
Reasoning
NLG
Multimodal
TOP